四川省泸州市鱼塘中学高二数学文月考试题含解析_第1页
四川省泸州市鱼塘中学高二数学文月考试题含解析_第2页
四川省泸州市鱼塘中学高二数学文月考试题含解析_第3页
四川省泸州市鱼塘中学高二数学文月考试题含解析_第4页
四川省泸州市鱼塘中学高二数学文月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省泸州市鱼塘中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为()A.x2+y2﹣2x﹣3=0 B.x2+y2+4x=0 C.x2+y2+2x﹣3=0 D.x2+y2﹣4x=0参考答案:D【考点】J9:直线与圆的位置关系.【分析】由圆心在x轴的正半轴上设出圆心的坐标(a,0)a大于0,然后利用点到直线的距离公式表示出圆心到直线3x+4y+4=0的距离,由直线与圆相切得到距离与半径相等列出关于a的方程,求出方程的解即可得到a的值.得到圆心的坐标,然后根据圆心坐标和半径写出圆的方程即可.【解答】解:设圆心为(a,0)(a>0),由题意知圆心到直线3x+4y+4=0的距离d===r=2,解得a=2,所以圆心坐标为(2,0)则圆C的方程为:(x﹣2)2+y2=4,化简得x2+y2﹣4x=0故选D2.已知圆与直线

及都相切,圆心在直线上,则圆的方程为()

A.

B.

C.

D.参考答案:B略3.下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③ B.②③④ C.②④⑤ D.①③⑤参考答案:D【考点】F1:归纳推理;F5:演绎推理的意义.【分析】本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对5个命题逐一判断即可得到答案.【解答】解:归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.故①③⑤是正确的故选D4.设函数的导数的最大值为3,则的图象的一条对称轴的方程是

A. B. C. D.参考答案:A5.阅读如图所示的程序框图,运行相应的程序,若输出的S为,则判断框中填写的内容可以是()A.n=6 B.n<6 C.n≤6 D.n≤8参考答案:C【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=8时,S=,由题意,此时应该不满足条件,退出循环,输出S的值为,故判断框中填写的内容可以是n≤6.【解答】解:模拟执行程序框图,可得S=0,n=2满足条件,S=,n=4满足条件,S==,n=6满足条件,S==,n=8由题意,此时应该不满足条件,退出循环,输出S的值为,故判断框中填写的内容可以是n≤6,故选:C.6.右边的程序语句输出的结果为

A.17

B.19

C.21

D.23参考答案:A略7.已知,焦点在x轴上的椭圆的上下顶点分别为B2、B1,经过点B2的直线l与以椭圆的中心为顶点、以B2为焦点的抛物线交于A、B两点,直线l与椭圆交于B2、C两点,且||=2||.直线l1过点B1且垂直于y轴,线段AB的中点M到直线l1的距离为.设=λ,则实数λ的取值范围是()A.(0,3) B.(﹣,2) C.(﹣,4) D.(﹣,3)参考答案:D【考点】椭圆的简单性质.【分析】根据抛物线的性质求得丨AB丨=2×=,丨BB2丨=丨AB丨=,丨AB2丨=丨AB丨=3,丨BB2丨=2,即可求得b的值,将直线方程代入抛物线方程,由韦达定理及抛物线的焦点弦公式,即可求得m的值,求得直线方程,代入椭圆方程,利用韦达定理及向量的坐标运算,求得λ的表达式,由a的取值范围,即可求得实数λ的取值范围.【解答】解:如图,由题意可知:设椭圆的标准方程为:(a>b>0),线段AB的中点M到直线l1的距离为,∴由抛物线的定义可知:丨AB丨=2×=,由||=2||,∴丨BB2丨=丨AB丨=,丨AB2丨=丨AB丨=3,由三角形的相似关系求得丨BB2丨=2,∴2b=2,b=1,.抛物线方程为x2=4y,设直线AB的方程为:x=m(y﹣1),由,代入整理得:m2y2﹣2(m2+2)y+m2=0,由韦达定理可知:yA+yB=,由抛物线的焦点弦公式可知:丨AB丨=yA+yB+p=+2=,解得:m=±2,∴直线AB的方程为:x=±2(y﹣1),∴,整理得:(8+a2)y2﹣16y+8﹣a2=0,由韦达定理可知:yC+=,∴yC=﹣1=,=λ,yB﹣yC=λ(﹣yB),由抛物线的性质可知:yB=丨BB2丨﹣b,=b,∴﹣yC=λ,整理得:λ==3﹣,由a2>b2=1,∴﹣<λ<3,∴实数λ的取值范围(﹣,3),故选D.8.抛物线x2=y上的一点M到焦点的距离为1,则点M到x轴的距离是()A. B. C.1 D.参考答案:B【考点】抛物线的简单性质.【分析】由抛物线方程,求出焦点F.设M(x0,y0),利用抛物线的定义,列式并解之即可得到点M的横坐标.【解答】解:∵抛物线方程为x2=y,∴抛物线的焦点F(0,)设点M(x0,y0),得y0+=1,解之得y0=故选:B.【点评】本题给出抛物线上一点到焦点的距离,求该点的横坐标.考查了抛物线的定义与标准方程,抛物线的简单几何性质等知识,属于基础题.9.下列四个命题中的真命题是

(

)A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过任意两个不同点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.C.不经过原点的直线都可以用方程+=1表示D.经过定点A(0,b)的直线都可以用方程y=kx+b表示参考答案:B略10.以为中点的抛物线的弦所在的直线方程为(

)

A.

B.

C.

D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.若y=alnx+bx2+x在x=1和x=2处有极值,则a=

,b=

.参考答案:﹣,﹣【考点】利用导数研究函数的极值.【分析】函数的极值点处的导数值为0,列出方程,求出a,b的值.【解答】解:f′(x)=+2bx+1,由已知得:?,∴a=﹣,b=﹣,故答案为:﹣,﹣.【点评】本题考查了导数的应用,考查函数极值的意义,是一道基础题.12.设分别是椭圆的左、右焦点,点P在椭圆上,若△为直角三角形,则△的面积等于________.参考答案:6略13.已知,且,则的最小值是

.参考答案:【分析】由基本不等式可得,设,,利用函数的单调性可得结果.【详解】因为,且,所以,设,则,,,即,,设,,在上递减,,即的最小值是,故答案为.

14.已知函数是定义在R的偶函数,且在区间[0,+∞)上单调递减,若实数a满足,则实数a的取值范围是__________.参考答案:【分析】先利用偶函数的性质将不等式化简为,再利用函数在上的单调性即可转化为,然后求得的范围.【详解】因为为R上偶函数,则,所以,所以,即,因为为上的减函数,,所以,解得,所以,的范围为.【点睛】1.函数值不等式的求法:(1)利用函数的奇偶性、特殊点函数值等性质将函数值不等式转化为与大小比较的形式:;(2)利用函数单调性将转化为自变量大小比较的形式,再求解不等式即可.2.偶函数的性质:;奇函数性质:;3.若在D上为增函数,对于任意,都有;若在D上为减函数,对于任意,都有.15.用数学归纳法证明:时,从“到”左边需增加的代数式是______________________.参考答案:16.若(其中常数e为自然对数的底数),则=

.参考答案:2

略17.已知从点P出发的三条射线PA、PB、PC两两成60°角,且分别与球O相切于A、B、C三点,若球O的体积为36π,则O、P两点间的距离是__________.参考答案:【分析】连接交平面于,由题意可得,再由相似三角形的相似比化简即可得到,根据球的体积公式可得半径,由此得到、两点间的距离。【详解】连接交平面于,由题意可得:平面,和为正三角形,.,,,.又球的体积为,半径,则.故答案为:.【点睛】本题考查空间中两点间的距离,解决此类问题的关键是掌握几何体的结构特征,考查学生的计算能力,属于中档题。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),以O为极点,x轴的非负半轴为为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程式2ρsin(θ+)=3,射线OM:θ=与圆心C的交点为O、P,与直线l的交点为Q,求线段PQ的长.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(I)把cos2φ+sin2φ=1代入圆C的参数方程为(φ为参数),消去参数化为普通方程,把代入可得圆C的极坐标方程.(II)设P(ρ1,θ1),联立,解得ρ1,θ1;设Q(ρ2,θ2),联立,解得ρ2,θ2,可得|PQ|.【解答】解:(I)圆C的参数方程为(φ为参数),消去参数化为普通方程:(x﹣1)2+y2=1,把代入可得圆C的极坐标方程:ρ=2cosθ.(II)设P(ρ1,θ1),则,解得ρ1=1,θ1=,设Q(ρ2,θ2),则,解得ρ2=3,θ2=,∴|PQ|=2.19.设、分别是椭圆的左、右焦点.(Ⅰ)若是该椭圆上的一个动点,求的最大值和最小值;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且(其中为坐标原点),求直线的斜率的取值范围.参考答案:解:(Ⅰ)易知所以,设则………2分因为,故当,即点为椭圆短轴端点时,有最小值………4分当,即点为椭圆长轴端点时,有最大值.……6分(Ⅱ)显然直线不满足题设条件,可设直线,联立,消去,整理得:∴

……8分由得:

①……9分∵

∴又……10分∴,即

……11分故由①、②得

∴的取值范围是.……12分20.(本小题满分16分)已知等差数列中,,令,数列的前项和为。

(1)求数列的通项公式;(2)求证:;

(3)是否存在正整数,且,使得,,成等比数列?若存在,求出的值,若不存在,请说明理由。参考答案:解:(1)设数列的公差为,由,。

解得,,∴。(4分)

(2)∵,,∴

∴。(8分)

(3)由(2)知,,∴,,,

∵,,成等比数列,∴,即

当时,,,符合题意;

当时,,无正整数解;

当时,,无正整数解;

当时,,无正整数解;

当时,,无正整数解;

当时,,则,而,

所以,此时不存在正整数,且,使得,,成等比数列。综上,存在正整数,且,使得,,成等比数列。(16分)21.(12分)已知圆A:和圆B:,求与圆A外切而内切于圆B的动圆圆心P的轨迹方程。参考答案:22.现有甲、乙两个靶,某射手进行射击训练,每次射击击中甲靶的概率是,每次射击击中乙靶的概率是,其中,已知该射手先后向甲、乙两靶各射击一次,两次都能击中与两次都不能击中的概率分别为.该射手在进行射击训练时各次射击结果互不影响.(Ⅰ)求,的值;(Ⅱ)假设该射手射击乙靶三次,每次射击击中目标得1分,未击中目标得0分.在三次射击中,若有两次连续击中,而另外一次未击中,则额外加1分;若三次全击中,则额外加3分.记为该射手射击三次后的总的分数,求的分布列;(Ⅲ)某研究小组发现,该射手在次射击中,击中目标的次数服从二项分布.且射击甲靶10次最有可能击中8次,射击乙靶10次最有可能击中7次.试探究:如果,其中,求使最大自然数.参考答案:本题考查两个互斥事件的概率加法公式,相互独立事件的概率乘法公式,随机事件的关系与运算,随机事件的概率,次独立重复试验与二项分布.改编自选修2-3P57例题4,P58探究与发现和思考.解:(Ⅰ)记“该射手向甲靶射击一次并击中”为事件,“该射手向乙靶射击一次并击中”为事件,则由题意可得,,由各次射击

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论