




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年浙江省金华市婺城区八年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列各组数可做为一个三角形三边长的是()A.4,6,8 B.4,5,9 C.1,2,4 D.5,5,112.(3分)如图,小手盖住的点的坐标可能是()A.(3,3) B.(﹣4,5) C.(﹣4,﹣6) D.(3,﹣6)3.(3分)若a>b,则下列不等式中正确的是()A.a﹣b<0 B.﹣5a<﹣5b C.a+8<b﹣8 D.a4.(3分)直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3 B.4 C.5 D.65.(3分)已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1 B.x>1 C.﹣3<x≤﹣1 D.x>﹣36.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=﹣2, B.a=﹣2,b=3, C.a=2,b=﹣3, D.a=﹣3,b=2,7.(3分)下列条件中,不能判断一个三角形为直角三角形的是()A.三个角的比是1:2:3 B.三条边满足关系a2=c2﹣b2 C.三条边的比是2:3:4 D.三个角满足关系∠B+∠C=∠A8.(3分)将直线y=3x向左平移2个单位所得的直线的解析式是()A.y=3x+2 B.y=3x﹣2 C.y=3(x﹣2) D.y=3(x+2)9.(3分)如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论①k<0;②a>0;③当x<3时,kx+b<x+a中,正确的个数是()A.0 B.1 C.2 D.310.(3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列五个结论中,其中正确的结论是()①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+9A.①②③④ B.①②⑤ C.①②③⑤ D.②③④⑥二、填空题(本题有6小题,每小题4分,共4分)11.(4分)函数y=1x-1中,自变量x的取值范围是12.(4分)如图是2002年在北京召开的世界数学家大会的会标,其中央图案正是经过艺术处理的“弦图”,它蕴含着一个著名的定理是.13.(4分)如图,∠ABC=∠DCB,请补充一个条件:,使△ABC≌△DCB.14.(4分)不等式2x﹣1≤3的正整数解是.15.(4分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,BC=1007,则在△BDC中,BD边上的高为16.(4分)在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为.三、解答题(本题有8小题,共66分)17.(6分)解不等式组x+418.(6分)如图,AB与CD相交于点E,AE=CE,CD=AB.求证:∠A=∠C.19.(6分)如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高,且∠B=40°,∠C=60°,求∠CAD、∠EAD的度数.20.(8分)某批服装进价为每件200元,商店标价每件300元,现商店准备将这批服装打折出售,但要保证毛利润不低于5%,问售价最低可按标价的几折?(要求通过列不等式进行解答)21.(8分)如图是由边长为1的小正方形组成的网格图.(1)请在网格图中建立平面直角坐标系xOy,使点A的坐标为(3,3),点B的坐标为(1,0);(2)若点C的坐标为(4,1),△ABC关于y轴对称三角形为△A1B1C1,则点C的对应点C1坐标为;(3)已知点D为y轴上的动点,求△ABD周长的最小值.22.(10分)甲、乙两车都从A地驶向B地,并以各自的速度匀速行驶.甲车比乙车早行驶,甲车途中休息了0.5h.设甲车行驶时间为x(h),下图是甲乙两车行驶的距离y(Mm)与x(h)的函数图象,根据题中信息回答问题:(1)填空:m=,a=;(2)当乙车出发后,求乙车行驶路程y(km)与x(h)的函数解析式,并写出相应的x的取值范围;(3)当甲车行驶多长时间时,两车恰好相距50km?请直接写出答案.23.(10分)定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命题(填“真”或“假”)①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.命题①是命题,命题②是命题;(2)如图2,Rt△ABC,∠C=90°,∠B=30°,AC=2,试探索Rt△ABC是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度;若不存在,请说明理由.(3)如图3,△ABC中,∠A=42°,若线段CD是△ABC的“和谐分割线”,且△BCD是等腰三角形,求出所有符合条件的∠B的度数.24.(12分)如图,直线y=kx+b与x轴、y轴分别交于点A(4,0)、B(0,4),点P在x轴上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)求k、b的值;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
2018-2019学年浙江省金华市婺城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列各组数可做为一个三角形三边长的是()A.4,6,8 B.4,5,9 C.1,2,4 D.5,5,11【分析】在三角形中任意两边之和大于第三边,任意两边之差小于第三边,据此可得答案.【解答】解:A、4+6>8,能组成三角形;B、4+5=9,不能组成三角形;C、1+2<4,不能组成三角形;D、5+5<11,不能组成三角形.故选:A.【点评】本题考查了三角形三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.(3分)如图,小手盖住的点的坐标可能是()A.(3,3) B.(﹣4,5) C.(﹣4,﹣6) D.(3,﹣6)【分析】根据盖住的点在第二象限,对各选项分析判断即可得解.【解答】解:A、(3,3)在第一象限;B、(﹣4,5)在第二象限;C、(﹣4,﹣6)在第三象限;D、(3,﹣6)在第四象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)若a>b,则下列不等式中正确的是()A.a﹣b<0 B.﹣5a<﹣5b C.a+8<b﹣8 D.a【分析】正确运用不等式的性质进行判断.【解答】解:A、当a>b时,不等式两边都减b,不等号的方向不变得a﹣b>0,故A错误;B、当a>b时,不等式两边都乘以﹣5,不等号的方向改变得﹣5a<﹣5b,故B正确;C、不等式两边的变化必须一致,故C错误;D、当a>b时,不等式两边都除以4,不等号的方向不变得a4>b故选:B.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.(3分)直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3 B.4 C.5 D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边=62∴斜边上的中线长=12×10故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.5.(3分)已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1 B.x>1 C.﹣3<x≤﹣1 D.x>﹣3【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=﹣2, B.a=﹣2,b=3, C.a=2,b=﹣3, D.a=﹣3,b=2,【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>﹣2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=4,b2=9,且﹣2<3,此时不但不满足a2>b2,也不满足a>b不成立,故B选项中a、b的值不能说明命题为假命题;在C中,a2=4,b2=9,且2>﹣3,此时不但不满足a2>b2,也不满足a>b不成立,故C选项中a、b的值不能说明命题为假命题;在D中,a2=9,b2=4,且﹣3<2,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故D选项中a、b的值能说明命题为假命题;故选:D.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.7.(3分)下列条件中,不能判断一个三角形为直角三角形的是()A.三个角的比是1:2:3 B.三条边满足关系a2=c2﹣b2 C.三条边的比是2:3:4 D.三个角满足关系∠B+∠C=∠A【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【解答】解:A、三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,故正确;B、三条边满足关系a2=c2﹣b2,故正确;C、三条边的比为2:3:4,22+32≠42,故错误;D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故正确.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.8.(3分)将直线y=3x向左平移2个单位所得的直线的解析式是()A.y=3x+2 B.y=3x﹣2 C.y=3(x﹣2) D.y=3(x+2)【分析】根据函数左右平移的规律:“左加右减”可得出平移后的函数解析式,即可得出答案.【解答】解:将直线y=3x向左平移2个单位所得的直线的解析式为:y=3(x+2).故选:D.【点评】此题考查了一次函数图象与几何变换,解答本题关键是掌握平移的法则:“左加右减”,“上加下减”,属于基础题,难度一般.9.(3分)如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论①k<0;②a>0;③当x<3时,kx+b<x+a中,正确的个数是()A.0 B.1 C.2 D.3【分析】根据函数图象可以判断题目中的各个小题是否正确,本题得以解决.【解答】解:由图象可得,一次函数y1=kx+b中k<0,b>0,故①正确,一次函数y2=x+a中a<0,故②错误,当x<3时,kx+b>x+a,故③错误,故选:B.【点评】本题考查一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.(3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列五个结论中,其中正确的结论是()①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+9A.①②③④ B.①②⑤ C.①②③⑤ D.②③④⑥【分析】利用等边三角形的性质得BA=BC,∠ABC=60°,利用性质得性质得BO=BO′=4,∠OBO′=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到,则可对①进行判断;再判断△BOO′为等边三角形得到OO′=OB=4,∠BOO′=60°,则可对②进行判断;接着根据勾股定理的逆定理证明△AOO′为直角三角形得到∠AOO′=90°,所以∠AOB=150°,则可对③进行判断;利用S四边形AOBO′=S△AOO′+S△BOO′可对④进行判断;作AH⊥BO于H,如图,计算出AH=32,OH=332,则AB2=25+123,S△AOB=3,然后计算出S△BAO′=S四边形AOBO′﹣S△AOB=3+43,从而得到S△BOC=3+43,最后利用S△AOC+S△AOB=S△ABC﹣S【解答】解:∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′=4,∠OBO′=60°,∵∠OBO′=CBA=60°,BO=BO′,BC=BA,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,所以①正确;∵BO=BO′,∠OBO′=60°,∴△BOO′为等边三角形,∴OO′=OB=4,∠BOO′=60°,所以②正确;∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,∴AO′=OC=5,在△OAO′中,∵OO′=4,AO=3,AO′=5,∴OA2+OO′2=AO′2,∴△AOO′为直角三角形,∴∠AOO′=90°,∴∠AOB=90°+60°=150°,所以③正确;S四边形AOBO′=S△AOO′+S△BOO′=12×4×3+34×42作AH⊥BO于H,如图,在RtAOH中,∠AOH=30°,∴AH=12OA=32,OH∴AB2=AH2+BH2=(32)2+(4+332)2S△AOB=12×4∴S△BAO′=S四边形AOBO′﹣S△AOB=6+43-3=3+43即S△BOC=3+43,∴S△AOC+S△AOB=S△ABC﹣S△BOC=34(25+123)﹣(3+43)=6+9故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和勾股定理、勾股定理的逆定理.二、填空题(本题有6小题,每小题4分,共4分)11.(4分)函数y=1x-1中,自变量x的取值范围是x≠1【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(4分)如图是2002年在北京召开的世界数学家大会的会标,其中央图案正是经过艺术处理的“弦图”,它蕴含着一个著名的定理是勾股定理.【分析】根据勾股定理的定义,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2,即可得出答案.【解答】解:根据勾股定理的定义并结合题给图形可得,该弦图蕴含的定理是勾股定理.故答案为:勾股定理.【点评】本题考查勾股定理的概念,属于基础题,注意掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.13.(4分)如图,∠ABC=∠DCB,请补充一个条件:AB=DC或者∠A=∠D,使△ABC≌△DCB.【分析】要使△ABC≌△DCB,已知了∠ABC=∠DCB以及公共边BC,因此可以根据SAS、AAS分别添加一组相等的对应边或一组相等的对应角.【解答】解:∵∠ABC=∠DCB,BC=BC,∴当AB=DC(SAS)或∠A=∠D(ASA)或∠BCA=∠DBC(AAS)时,∴△ABC≌△DCB.故填AB=DC或∠A=∠D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.14.(4分)不等式2x﹣1≤3的正整数解是1、2.【分析】首先移项,合并同类项,把x的系数化为1,解出不等式的解集,再从不等式的解集中找出适合条件的正整数即可.【解答】解:2x﹣1≤3,移项得:2x≤3+1,合并同类项得:2x≤4,把x的系数化为1得:x≤2,∵x是正整数,∴x=1、2.故答案为:1、2.【点评】此题主要考查了求不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质,同学们要注意在不等式两边同时除以同一个负数时,不等号一定要改变.15.(4分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,BC=1007,则在△BDC中,BD边上的高为60【分析】首先过D作DE⊥BC,CH⊥BD交BD的延长线于H.根据角平分线上的点到角两边的距离相等可得AD=DE=3,再利用面积法构建方程即可解决问题.【解答】解:如图,作DE⊥BC于E,CH⊥BD交BD的延长线于H.在Rt△ABD中,∵∠A=90°,AB=4,AD=3,∴BD=32∵BD平分∠ABC,DA⊥BA,DE⊥BC,∴DA=DE=3,∵12•BC•DE=12•BD∴CH=100故答案为607【点评】此题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.16.(4分)在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为(103,10)或(1,3)【分析】①如图1所示,当△POQ≌△COQ时,即OP=OC=1,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,根据勾股定理得到OB=22+62=210,根据相似三角形的性质得到PE,OE,于是得到点P的坐标;②如图2,当△POQ≌△CQO时,即QP=OC=4,OP=CQ,点的四边PQCO是平行四边形,求得PQ∥OA,过P作PE⊥OA于E,过B作BF⊥OA于【解答】解:以P,O,Q为顶点的三角形与△COQ全等,①如图1所示,当△POQ≌△COQ时,即OP=OC=4,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴OB=22+∵PE∥BF,∴△POE∽△BOF,∴OPOB∴42∴PE=6105,∴点P的坐标为(6105,②如图2,当△POQ≌△CQO时,即QP=OC=4,OP=CQ,∴四边形PQCO是平行四边形,∴PQ∥OA,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴OB=22+∵PQ∥OA,∴PBOB∴PB=10∴PE=10∴点P是OB的中点,∵PE∥BF,∴PE=12BF=3,OE=12∴点P的坐标为(1,3),综上所述,点P的坐标为(103,10)或(1,3故答案为:(103,10)或(1,3【点评】本题考查了全等三角形的判定,平行四边形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本题有8小题,共66分)17.(6分)解不等式组x+4【分析】先求出两个不等式的解集,再求其公共解.【解答】解:x+4≤解不等式①,得x≥2,解不等式②,得x<4,所以,不等式组的解集为2≤x<4.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(6分)如图,AB与CD相交于点E,AE=CE,CD=AB.求证:∠A=∠C.【分析】根据等腰三角形的性质得出∠BAC=∠DCA,根据全等三角形的判定得出△DAC≌△BCA,根据三角形的性质得出∠D=∠B,根据三角形的内角和定理求出即可.【解答】证明:连接AC,∵AE=CE,∴∠BAC=∠DCA,在△DAC和△BCA中AC=AC∠DCA=∠BAC∴△DAC≌△BCA(SAS),∴∠D=∠B,∵∠D+∠DAE+∠DEA=180°,∠B+∠BCE+∠BEC=180°,∠DEA=∠BEC,∴∠DAE=∠BCE.【点评】本题考查了全等三角形的性质和判定和三角形内角和定理,能求出△DAC≌△BCA是解此题的关键.19.(6分)如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高,且∠B=40°,∠C=60°,求∠CAD、∠EAD的度数.【分析】根据直角三角形两锐角互余可得∠CAD=90°﹣∠C,再利用三角形的内角和定理求出∠BAC,根据角平分线的定义求出∠CAE,然后根据∠EAD=∠CAE﹣∠CAD计算即可得解.【解答】解:∵AD是BC边上的高,∠C=60°,∴∠CAD=90°﹣∠C=90°﹣60°=30°;在△ABC中,∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵AE是∠BAC的角平分线,∴∠CAE=12∠BAC=12∴∠EAD=∠CAE﹣∠CAD=40°﹣30°=10°.【点评】本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.20.(8分)某批服装进价为每件200元,商店标价每件300元,现商店准备将这批服装打折出售,但要保证毛利润不低于5%,问售价最低可按标价的几折?(要求通过列不等式进行解答)【分析】设售价可以按标价打x折,根据“保证毛利润不低于5%”列出不等式,解之可得.【解答】解:设售价可以按标价打x折,根据题意,得:200+200×5%≤300×x解得:x≥7,答:售价最低可按标价的7折.【点评】本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式.21.(8分)如图是由边长为1的小正方形组成的网格图.(1)请在网格图中建立平面直角坐标系xOy,使点A的坐标为(3,3),点B的坐标为(1,0);(2)若点C的坐标为(4,1),△ABC关于y轴对称三角形为△A1B1C1,则点C的对应点C1坐标为(﹣4,1);(3)已知点D为y轴上的动点,求△ABD周长的最小值.【分析】(1)根据题意建立如图所示的平面直角坐标系即可;(2)根据关于y轴对称的点的坐标特征即可得到结论;(3)连接AB1交y轴于D,根据勾股定理函数三角形的周长公式即可得到结论.【解答】解:(1)建立如图所示的平面直角坐标系;(2)如图所示,△A1B1C1即为所求;点C1坐标为(﹣4,1),故答案为:(﹣4,1);(3)连接AB1交y轴于D,则此时,△ABD周长的值最小,即△ABD周长的最小值=AB+AB1,∵AB=32+22=∴△ABD周长的最小值=5+13【点评】本题考查了轴对称﹣最短路线问题,勾股定理,关于坐标轴对称的点的坐标特征,正确的作出图形是解题的关键.22.(10分)甲、乙两车都从A地驶向B地,并以各自的速度匀速行驶.甲车比乙车早行驶,甲车途中休息了0.5h.设甲车行驶时间为x(h),下图是甲乙两车行驶的距离y(Mm)与x(h)的函数图象,根据题中信息回答问题:(1)填空:m=1,a=40;(2)当乙车出发后,求乙车行驶路程y(km)与x(h)的函数解析式,并写出相应的x的取值范围;(3)当甲车行驶多长时间时,两车恰好相距50km?请直接写出答案.【分析】(1)用休息后出发时间减去0.5即为m的值;根据甲匀速行驶即可求出a的值;(2)设乙行驶路程y=kx+b,找出图象上(2,0)和(3.5,120)代入即可求出k,b值,从而求出解析式;(3)用待定系数法求出甲路程y与时间x的关系,由“两车相距50km”得到|列出方程求出x即为答案.【解答】解:(1)m=1.5﹣0.5=1.∵甲车匀速行驶,∴a=1203.5-0.5(2)设乙行驶路程y=kx+b,依题意得,2k+b=03.5k+b=120解得,k=80b=-160∴乙行驶路程y=80x﹣160.当y=260km时,80x﹣160=260,解得,x=5.25.∴自变量取值范围为2≤x≤5.25.(3)设甲在后一段路程y=mx+n,依题意得,1.5m+n=403.5m+n=120,解得m=40∴甲路程y=40x﹣20(1.5≤x≤7).①当1≤x≤2时,由两车相距50km得,40x﹣20=50解得,x=7②当2<x≤5.25时,若两车相距50km,则|40x﹣20﹣(80x﹣160)|=50解得,x=9③当5.25<x≤7时,乙车已到达目的地,两车相距50km,则260﹣(40x﹣20)=50解得,x=23故答案为74,94,194【点评】本题考查了一次函数的应用,解题关键是明确题意找出所求问题需要的条件,第三问需要分三种情况进行讨论是本题的难点.23.(10分)定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命题(填“真”或“假”)①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.命题①是假命题,命题②是真命题;(2)如图2,Rt△ABC,∠C=90°,∠B=30°,AC=2,试探索Rt△ABC是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度;若不存在,请说明理由.(3)如图3,△ABC中,∠A=42°,若线段CD是△ABC的“和谐分割线”,且△BCD是等腰三角形,求出所有符合条件的∠B的度数.【分析】(1)根据“和谐分割线”的定义即可判断;(2)如图作∠CAB的平分线,只要证明线段AD是“和谐分割线”即可,并根据三角函数或相似求AD的长;(3)分2种情形讨论即可;【解答】解:(1)①等边三角形不存在“和谐分割线”,不正确,是假命题;②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”,正确,是真命题,故答案为:假,真;(2)Rt△ABC存在“和谐分割线”,理由是:如图作∠CAB的平分线,∵∠C=90°,∠B=30°,∴∠DAB=∠B=30°,∴DA=DB,∴△ADB是等腰三角形,且△ACD∽△BCA,∴线段AD是△ABC的“和谐分割线”,AD=AC(3)如图3中,分2种情形:①当DC=DB,△ACD∽△ABC时,∠B=∠ACD=∠DCB设∠B=x,则∠ADC=2x∴x+2x+42=180x=46°可得∠B=46°.②当BC=BD,△ACD∽△ABC时,设∠B=x,则∠BDC=∠BCD=42+x∴42+x+42+x+x=180x=32°可得∠B=32°.综上所述,满足条件的∠B的值为46°或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《儿童护理学》考试试题及答案
- 2025年度有机茶青种植基地与茶饮连锁企业全面合作开发合同
- 2025年高端商务大厦全方位服务及员工职业发展规划合作协议
- 2025年综合性医院医师聘任协议书(含进修及专业培训条款)
- 2025年智能可降解农产品包装供应合同
- 2025年子女房产分割与赡养教育金专款专用合同
- 2025年新型五金建材供销及商标专用权保护协议
- 2025年高端农产品供应链合作招标合同
- 2025代持股权管理及风险防控协议
- 2025版塔吊关键部件维修更换保障服务合同
- GB/T 6344-2008软质泡沫聚合材料拉伸强度和断裂伸长率的测定
- GB/T 3836.4-2021爆炸性环境第4部分:由本质安全型“i”保护的设备
- GB/T 20801.6-2020压力管道规范工业管道第6部分:安全防护
- GA/T 1163-2014人类DNA荧光标记STR分型结果的分析及应用
- 蒸汽发生器设计、制造技术要求
- 全套课件-水利工程管理信息技术
- 施工员钢筋工程知识培训(培训)课件
- 《阿房宫赋》全篇覆盖理解性默写
- 学校体育学(第三版)ppt全套教学课件
- 住建部《建筑业10项新技术(2017版)》解读培训课件
- NCStudioGen6A编程手册
评论
0/150
提交评论