第二次数学危机_第1页
第二次数学危机_第2页
第二次数学危机_第3页
第二次数学危机_第4页
第二次数学危机_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二次数学危机第1页,课件共13页,创作于2023年2月第二次数学危机

十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。而这次的危机是由牛顿学派的外部、贝克莱大主教提出的,是对牛顿“无穷小量”说法的质疑引起的。

第2页,课件共13页,创作于2023年2月一、危机的出现17世纪数学史上出现了一个崭新的数学分支——数学分析,或称微积分。微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。由无穷小量究竟是不是零的问题引起了极大的争论,从而引发了第二次数学危机。第3页,课件共13页,创作于2023年2月牛顿的“无穷小”牛顿的「无穷小量」无穷小量在牛顿的微积分中的主要运用。无穷小量的数学推导过程在逻辑上自相矛盾。也正因为他的逻辑上不严格,而遭到责难。牛顿(IsaccNewton,1642—1727)英国数学家、天文学家和物理学家

第4页,课件共13页,创作于2023年2月微积分受到攻击与责难十八世纪的数学家对待微积分发展的态度。对这些基础问题的讨论不感兴趣。认为所谓的严密化就是烦琐。在微积分的发展过程中,出现了两种不荣乐观的局面。微积分的基础问题受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。第5页,课件共13页,创作于2023年2月贝克莱的发难贝克莱,18世纪英国哲学家,西方近代主观唯心主义哲学的主要代表。他对微积分强有力的批评,在数学界产生了最令人震撼的撞击。1734年,贝克莱以“渺小的哲学家”之名出版了一本针对微积分基础的书——《分析学家》。在这本书中,贝克莱对牛顿的理论进行了攻击。他指责牛顿“依靠双重错误得到了不科学却正确的结果”。因为无穷小量在牛顿的理论中一会儿说是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是“已死量的鬼魂”。贝克莱的攻击真正抓住了牛顿理论中的缺陷,是切中要害的。

这使得数学家在将近200年的时间里,不能彻底反驳贝克莱的责难。直至柯西创立极限理论,才较好地反驳了贝克莱的责难。直至魏尔斯特拉斯创立“”语言,才彻底地反驳了贝克莱的责难。贝克莱1685年3月12日出生于爱尔兰基尔肯尼郡1753年1月14日卒于牛津。

第6页,课件共13页,创作于2023年2月实践是检验真理的唯一标准应当承认,贝克莱的责难是有道理的。“无穷小”的方法在概念上和逻辑上都缺乏基础。牛顿和当时的其它数学家并不能在逻辑上严格说清“无穷小”的方法。数学家们相信它,只是由于它使用起来方便有效,并且得出的结果总是对的。特别是像海王星的发现那样鼓舞人心的例子,显示出牛顿的理论和方法的巨大威力。所以,人们不大相信贝克莱的指责。这表明,在大多数人的脑海里,“实践是检验真理的唯一标准。”第7页,课件共13页,创作于2023年2月

二、危机的实质

第二次数学危机的实质是什么?应该是数学思想的不严密的、直观的、强调形式的计算,而不管基础的可靠与否,也就是说,微积分理论缺乏逻辑基础。

其实,在牛顿把瞬时速度说成“物体所走的无穷小距离与所用的无穷小时间之比”的时候,这种说法本身就是不明确的,是含糊的。当然,牛顿也曾在他的著作中说明,然提出和使用了“极限”这个词,但并没有明确说清这个词的意思。

德国的莱布尼茨虽然也同时发明了微积分,但是也没有明确给出极限的定义。正因为如此,此后近二百年间的数学家,都不能满意地解释贝克莱提出的悖论。所以,由“无穷小”引发的第二次数学危机,实质上是缺少严密的极限概念和极限理论作为微积分学的基础。第8页,课件共13页,创作于2023年2月三、危机的解决进入19世纪,历史要求给微积分以严格的基础。终于在数学家们的共同努力下,到19世纪末,分析的严格化问题得到了解决。第9页,课件共13页,创作于2023年2月第一个为补救第二次数学危机提出真正有见地的意见的是达朗贝尔。他在1754年指出,必须用可靠的理论去代替当时使用的粗糙的极限理论。到了19世纪,出现了一批杰出的数学家,他们积极为微积分的奠基工作而努力。首先要提到的是捷克的哲学家和数学家波尔查诺,他开始将严格的论证引入到数学分析中。1816年,他在二项展开公式的证明中,明确提出了级数收敛的概念,同时对极限、连续和变量有了较深入的理解。达朗贝尔(法)波尔查诺第10页,课件共13页,创作于2023年2月

分析学的奠基人,公认是法国的多产的数学家柯西,柯西在数学分析和置换群理论方面作了开拓性的工作,是最伟大的近代数学家之一。柯西在1821~1823年间出版的《分析教程》和《无穷小计算讲义》是数学史上划时代的著作,在那里,他给出了数学分析一系列基本概念的精确定义。例如,他给出了精确的极限定义,然后用极限定义连续性、导数、微分、定积分和无穷级数的收敛性。柯西第11页,课件共13页,创作于2023年2月接着,魏尔斯特拉斯建立了实数系,创造了精确的“”语言戴德金,康托尔等又将实数理论严密化。分析有了严密的基础和完整的体系微积分学。无论是基本概念,还是在逻辑严密性、形式严谨性上,都有欧氏几何学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论