




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2016年安徽省六安一中高一开学数学试卷一、选择题(共10小题,每小题3分,满分30分)1.已知,ab>0,化简二次根式a的正确结果是()A. B. C.﹣ D.﹣2.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,用你发现的规律得出22015的末位数字是()A.3 B.4 C.6 D.83.把方程=化成整式方程,得()A.x2+3y2+6x﹣9=0 B.x2+3y2﹣6x﹣9=0C.x2+y2﹣2x﹣3=0 D.x2+y2+2x﹣3=04.若不等式组的解集为空集,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤35.股票每天的涨跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天涨停,之后两天时间又跌回原价,若这两天此股票股价的平均下跌的百分率为x,则x满足的方程是()A.1﹣2x= B.(1﹣x)2= C.1﹣2x= D.(1﹣x)2=6.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或207.如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点D.若OC=3,CD=2,则圆心O到弦AB的距离是()A.6 B.9﹣ C. D.25﹣38.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.49.如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则的值为()A. B.2 C. D.10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<﹣1;④b2+8a>4ac.其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(共5小题,每小题4分,满分20分)11.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数136541这20户家庭日用电量的众数、中位数分别是.12.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是(把所有正确结论的序号都选上).13.如图,在⊙O的内接五边形ABCDE中,∠CAD=40°,则∠B+∠E=°.14.如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,m+n=.15.若关于x的方程(x﹣2)(x2﹣4x+m)=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m的取值范围是.三、解答题(共5小题,满分50分)16.解方程:x2﹣2|x﹣1|﹣2=0.17.已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线;(3)若AC=3,tanB=,求⊙O的半径.18.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)19.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数",求此一次函数的解析式.20.已知二次函数f(x)=ax2+bx+c,其中a>0.(1)若方程f(x)+2x=0有两个实根x1=1,x2=3,且方程f(x)+6a=0有两个相等的根,f(x)解析式;(2)若f(x)得图象与x轴交于A(﹣3,0),B(m,0)两点,且当﹣1≤x≤0时,f(x)≤0恒成立,求实数m的取值范围.注:f(x)是一个函数的记号,相当于函数y.
2016年安徽省六安一中高一开学数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.已知,ab>0,化简二次根式a的正确结果是()A. B. C.﹣ D.﹣【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质进而化简得出答案.【解答】解:∵ab>0,∴a=a×=﹣.故选:D.2.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,用你发现的规律得出22015的末位数字是()A.3 B.4 C.6 D.8【考点】尾数特征.【分析】因为21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选:D.3.把方程=化成整式方程,得()A.x2+3y2+6x﹣9=0 B.x2+3y2﹣6x﹣9=0C.x2+y2﹣2x﹣3=0 D.x2+y2+2x﹣3=0【考点】无理方程.【分析】先将方程两边都平方即可去掉根号,再根据去分母化为整式方程,最后整理整式方程即可得.【解答】解:方程两边平方,得:,∴4(x2+y2)=(x+3)2+y2,去括号,得:4x2+4y2=x2+6x+9+y2,移项、合并,得:3x2+3y2﹣6x﹣9=0,两边都除以3,得:x2+y2﹣2x﹣3=0,故选:C.4.若不等式组的解集为空集,则a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3【考点】解一元一次不等式组.【分析】根据不等式组的解集为空集时的条件列出不等式,即可求出a的取值范围.【解答】解:,由①得:x<3,∵不等式组的解集为空集,∴a的取值范围是:a≥3;故选B.5.股票每天的涨跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天涨停,之后两天时间又跌回原价,若这两天此股票股价的平均下跌的百分率为x,则x满足的方程是()A.1﹣2x= B.(1﹣x)2= C.1﹣2x= D.(1﹣x)2=【考点】由实际问题抽象出一元二次方程.【分析】设这两天此股票股价的平均下跌的百分率为x,根据“涨停后的价格为(1+10%),两天时间又跌回原价”,即可列出关于x的一元二次方程,整理后即可得出结论.【解答】解:设这两天此股票股价的平均下跌的百分率为x,涨停后的价格为(1+10%),根据题意得:(1+10%)×(1﹣x)2=1,整理得:(1﹣x)2=.故选B.6.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或20【考点】根与系数的关系;分式的化简求值.【分析】由于实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则a,b可看着方程x2﹣8x+5=0的两根,根据根与系数的关系得a+b=8,ab=5,然后把通分后变形得到,再利用整体代入的方法计算.【解答】解:∵a,b满足a2﹣8a+5=0,b2﹣8b+5=0,∴a,b可看着方程x2﹣8x+5=0的两根,∴a+b=8,ab=5,====﹣20.故选A.7.如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点D.若OC=3,CD=2,则圆心O到弦AB的距离是()A.6 B.9﹣ C. D.25﹣3【考点】垂径定理;勾股定理.【分析】过圆心O作弦的垂线,垂足为G,得到Rt△OBG和Rt△OCG,在这两个三角形中用勾股定理计算可以求出OG的值,也就是圆心到弦的距离.【解答】解:如图:过O作OG⊥AB于G,根据垂径定理有:AG=BG,设AC=2a,则CB=4a,CG=a,GB=3a,在Rt△OCG中,OC2=OG2+CG2=OG2+a2①在Rt△OBG中,OB2=OG2+GB2=OG2+9a2②又OC=3,OB=5,代入①②中,解方程得:a2=2,OG2=7.所以圆心到弦的距离是.故选C.8.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.9.如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点Ai,交直线于点Bi.则的值为()A. B.2 C. D.【考点】二次函数综合题.【分析】根据Ai的纵坐标与Bi纵坐标的绝对值之和为AiBi的长,分别表示出所求式子的各项,拆项后抵消即可得到结果.【解答】解:根据题意得:AiBi=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选A10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<﹣1;④b2+8a>4ac.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】首先根据抛物线的开口方向得到a<0,抛物线交y轴于正半轴,则c>0,而抛物线与x轴的交点中,﹣2<x1<﹣1,0<x2<1,说明抛物线的对称轴在﹣1~0之间,即x=﹣>﹣1,根据这些条件以及函数图象上一些特殊点的坐标来进行判断.【解答】解:由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=﹣>﹣1,且c>0.①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;③已知抛物线经过(﹣1,2),即a﹣b+c=2(1),由图知:当x=1时,y<0,即a+b+c<0(2),由①知:4a﹣2b+c<0(3);联立(1)(2),得:a+c<1;联立(1)(3)得:2a﹣c<﹣4;故3a<﹣3,即a<﹣1;所以③正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确;因此正确的结论是①②③④.故选D.二、填空题(共5小题,每小题4分,满分20分)11.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数136541这20户家庭日用电量的众数、中位数分别是6,6.5.【考点】众数;中位数.【分析】根据众数和中位数的定义求解即可,众数是一组数据中出现次数最多的数;中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:这20户家庭日用电量的众数是6,中位数是(6+7)÷2=6.5,故答案为:6,6。5.12.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是①③④(把所有正确结论的序号都选上).【考点】分式的混合运算;解一元一次方程.【分析】按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.【解答】解:①∵a+b=ab≠0,∴+=1,此选项正确;②∵a=3,则3+b=3b,b=,c=,∴b+c=+=6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8.当a=c时,则b=0,不符合题意,b=c时,a=0,也不符合题意;故只能是a=b=2,c=4;此选项正确其中正确的是①③④.故答案为:①③④.13.如图,在⊙O的内接五边形ABCDE中,∠CAD=40°,则∠B+∠E=220°.【考点】圆周角定理.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠E=180°+40°=220°.故答案为:220.14.如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,m+n=5.【考点】正方形的性质;坐标与图形性质;全等三角形的判定与性质;勾股定理.【分析】证明△OCN∽△NBM,列比例式得:m==(n﹣2)2+3,即当n=2时,m有最小值为3,在Rt△OAM中,因为OA是定值,AM的大小决定OM的大小,由m的最小值计算OM的最小值.【解答】解:由题意得:OA=4,AM=m,OC=4,CN=n,BN=4﹣n,BM=4﹣m,∵四边形OABC是矩形,∴∠OCB=∠ABC=90°,∴∠CNO+∠CON=90°,∵ON⊥MN,∴∠ONM=90°,∴∠CNO+∠MNB=90°,∴∠CON=∠MNB,∴△OCN∽△NBM,∴,∴=,m==(n﹣2)2+3,即当n=2时,m有最小值为3,在Rt△OAM中,OA是定值,AM的大小决定OM的大小,当AM为最小时,OM为最小,∴当AM=m=3时,OM最小,此时m+n=3+2=5,故答案为:5.15.若关于x的方程(x﹣2)(x2﹣4x+m)=0有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m的取值范围是3<m≤4.【考点】根与系数的关系;三角形三边关系.【分析】根据原方程可知x﹣2=0,和x2﹣4x+m=0,因为关于x的方程(x﹣2)(x2﹣4x+m)=0有三个根,所以x2﹣4x+m=0的根的判别式△>0,然后再由三角形的三边关系来确定m的取值范围.【解答】解:∵关于x的方程(x﹣2)(x2﹣4x+m)=0有三个根,∴①x﹣2=0,解得x1=2;②x2﹣4x+m=0,∴△=16﹣4m≥0,即m≤4,∴x2=2+,x3=2﹣,又∵这三个根恰好可以作为一个三角形的三条边的长,且最长边为x2,∴x1+x3>x2;解得3<m≤4,∴m的取值范围是3<m≤4.故答案为:3<m≤4.三、解答题(共5小题,满分50分)16.解方程:x2﹣2|x﹣1|﹣2=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】当x≥1时,方程为x2﹣2x=0,因式分解法求解得出x的值;当x<1时,方程为x2+2x﹣4=0,公式法求解可得x的值.【解答】解:当x≥1时,方程为x2﹣2x=0,即x(x﹣2)=0,解得x=0(舍)或x=2;当x<1时,方程为x2+2x﹣4=0,解得:x==﹣1±,即x=﹣1﹣,综上x=2或x=﹣1﹣.17.已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线;(3)若AC=3,tanB=,求⊙O的半径.【考点】切线的判定;作图—复杂作图.【分析】(1)作图思路:可做AD的垂直平分线,这条垂直平分线与AB的交点就是所求圆的圆心,这个圆心和A点或D点的距离就是圆的半径.(2)要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.本题中可先连接OD再证明OD⊥BC即可.(3)在Rt△ABC中,由“tanB=,AC=3”求得BC=4,AB=5;然后在Rt△ODB中,利用∠B的正切值求得=;设一份为x,则OD=OA=3x,则BD=4x,OB=5x.列出关于x的方程,解方程即可.【解答】解:(1)如图;(2)连接OD;∵AD平分∠BAC,∴∠BAD=∠DAC;又∵OD=OA,∴∠ODA=∠OAD,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODC=∠C=90°,∴BC为⊙O的切线.(3)在Rt△ABC中,∠C=90°,tanB=,AC=3,∴BC=4,AB=5,在Rt△ODB中,tanB==,设OD=OA=3x,则BD=4x,OB=5x,∴AB=8x,∴8x=5,解得x=,∴半径OA=.18.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0。74,tan42°≈0.90)【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2。4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5。8米.19.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2016]上的“闭函数"吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此一次函数的解析式.【考点】反比例函数的性质;一次函数的性质.【分析】(1)根据反比例函数y=的单调区间进行判断;(2)根据新定义运算法则列出关于系数k、b的方程组或,通过解该方程组即可求得系数k、b的值.【解答】解:(1)是;由函数的图象可知,当1≤x≤2014时,函数值y随着自变量x的增大而减少,而当x=1时,y=2014;x=2014时,y=1,故也有1≤y≤2014,所以,函数是闭区间[1,2014]上的“闭函数”.(2)因为一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,所以根据一次函数的图象与性质,必有:①当k>0时,,解之得k=1,b=0.∴一次函数的解析式为y=x.②当k<0时,,解之得k=﹣1,b=m+n.∴一次函数的解析式为y=﹣x+m+n.故一次函数的解析式为y=x或y=﹣x+m+n.20.已知二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7-Hydroxytropolone-3-Hydroxytropolone-生命科学试剂-MCE
- 2025年网络安全监测与防护技术外包服务协议
- 2025年海洋资源勘探设备采购追加补充合同范本
- 2025年度外卖配送平台食品安全规范培训及质量保障合同
- 2025年城市地下综合管廊工程EPC总承包服务合同
- 2025年度历史砖砌古堡保护与修复工程劳务协议
- 2025年跨境电商物流代理与仓储服务全面合作协议
- 2025年智能办公环境租赁与定制家具租赁配套服务协议
- 2025年城市安防设施升级改造与风险评估合作合同
- 2025年度高端财务咨询与内部审计服务合同
- 企业信息系统管理制度
- 骨科疾病临床诊疗思维
- 保安公司公司管理制度
- YY 0267-2025血液净化体外循环系统血液透析器、血液透析滤过器、血液滤过器及血液浓缩器用体外循环血路/液路
- 【国家】2024年国家工业信息安全发展研究中心招聘40人笔试附带答案详解析
- 2025年北京市东城区中考语文一模试卷
- 高空作业考证试题及答案
- 江山市虎鼎环保科技有限公司飞灰脱钙及水洗氯化物品质提升技改项目环境影响报告表
- 锑化物超晶格长波红外探测器:从制备到性能优化的深度剖析
- 太空交直流混合微电网:电能变换与保护技术的深度剖析
- 我的旅行设计绘本
评论
0/150
提交评论