山东省鄄城县联考2024届九年级数学第一学期期末质量跟踪监视试题含解析_第1页
山东省鄄城县联考2024届九年级数学第一学期期末质量跟踪监视试题含解析_第2页
山东省鄄城县联考2024届九年级数学第一学期期末质量跟踪监视试题含解析_第3页
山东省鄄城县联考2024届九年级数学第一学期期末质量跟踪监视试题含解析_第4页
山东省鄄城县联考2024届九年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省鄄城县联考2024届九年级数学第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在平行四边形中,、是上两点,,连接、、、,添加一个条件,使四边形是矩形,这个条件是()A. B. C. D.2.如图,在圆心角为45°的扇形内有一正方形CDEF,其中点C、D在半径OA上,点F在半径OB上,点E在弧AB上,则扇形与正方形的面积比是()A.π:8 B.5π:8 C.π:4 D.π:43.下列方程中,是一元二次方程的是()A.x+=0 B.ax2+bx+c=0 C.x2+1=0 D.x﹣y﹣1=04.如图,抛物线y=ax2+bx+c交x轴分别于点A(﹣3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C.下列结论①2a﹣b=0;②a+b+c=0;③当m≠﹣1时,a﹣b>am2+bm;④当△ABC是等腰直角三角形时,a=;⑤若D(0,3),则抛物线的对称轴直线x=﹣1上的动点P与B、D两点围成的△PBD周长最小值为3,其中,正确的个数为()A.2个 B.3个 C.4个 D.5个5.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)6.已知四边形中,对角线,相交于点,且,则下列关于四边形的结论一定成立的是()A.四边形是正方形 B.四边形是菱形C.四边形是矩形 D.7.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为()A.π B.π C.π D.π8.二次函数的部分图象如图所示,有以下结论:①;②;③;④,其中错误结论的个数是()A.1 B.2 C.3 D.49.已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y210.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.311.不等式的解为()A. B. C. D.12.下列运算正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.14.如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点I是△ABC的内心,连接BD.下列结论:①点D的位置随着动点C位置的变化而变化;②ID=BD;③OI的最小值为;④ACBC=CD.其中正确的是_____________.(把你认为正确结论的序号都填上)15.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为______.16.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB=4,则阴影部分的面积是______.17.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).18.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.三、解答题(共78分)19.(8分)在平面直角坐标系xoy中,点A(-4,-2),将点A向右平移6个单位长度,得到点B.(1)若抛物线y=-x2+bx+c经过点A,B,求此时抛物线的表达式;(2)在(1)的条件下的抛物线顶点为C,点D是直线BC上一动点(不与B,C重合),是否存在点D,使△ABC和以点A,B,D构成的三角形相似?若存在,请求出此时D的坐标;若不存在,请说明理由;(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段有且只有一个公共点时,求抛物线顶点横坐标t的取值范围.20.(8分)用配方法解一元二次方程21.(8分)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为1.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.22.(10分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.23.(10分)小涛根据学习函数的经验,对函数的图像与性质进行了探究,下面是小涛的探究过程,请补充完整:(1)下表是与的几组对应值...-2-10123......-8-30mn13...请直接写出:=,m=,n=;(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;(3)请直接写出函数的图像性质:;(写出一条即可)(4)请结合画出的函数图象,解决问题:若方程有三个不同的解,请直接写出的取值范围.24.(10分)对于平面直角坐标系中的点和半径为1的,定义如下:①点的“派生点”为;②若上存在两个点,使得,则称点为的“伴侣点”.应用:已知点(1)点的派生点坐标为________;在点中,的“伴侣点”是________;(2)过点作直线交轴正半轴于点,使,若直线上的点是的“伴侣点”,求的取值范围;(3)点的派生点在直线,求点与上任意一点距离的最小值.25.(12分)如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.(1)求抛物线的表达式;(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).①当为何值时,得面积最小?②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.26.如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.(1)求证:CD是⊙O的切线;(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.

参考答案一、选择题(每题4分,共48分)1、A【分析】由平行四边形的性质可知:,,再证明即可证明四边形是平行四边形.【题目详解】∵四边形是平行四边形,∴,,∵对角线上的两点、满足,∴,即,∴四边形是平行四边形,∵,∴,∴四边形是矩形.故选A.【题目点拨】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.2、B【分析】连接OE,设正方形的边长为a.根据等腰直角三角形的性质,得OC=CF=a,在直角三角形OFC中,根据勾股定理列方程,用a表示出r的值,再根据扇形及正方形的面积公式求解.【题目详解】解:连接OE,设正方形的边长为a,则正方形CDEF的面积是a2,在Rt△OCF中,a2+(2a)2=r2,即r=a,扇形与正方形的面积比=:a2=:a2=5π:1.故选B.【题目点拨】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.3、C【解题分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【题目详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=1时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【题目点拨】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4、D【分析】把A、B两点坐标代入抛物线的解析式并整理即可判断①②;根据抛物线的顶点和最值即可判断③;求出当△ABC是等腰直角三角形时点C的坐标,进而可求得此时a的值,于是可判断④;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.【题目详解】解:把A(﹣3,0),B(1,0)代入y=ax2+bx+c得到,消去c得到2a﹣b=0,故①②正确;∵抛物线的对称轴是直线x=﹣1,开口向下,∴x=﹣1时,y有最大值,最大值=a﹣b+c,∵m≠﹣1,∴a﹣b+c>am2+bm+c,∴a﹣b>am2+bm,故③正确;当△ABC是等腰直角三角形时,C(﹣1,2),可设抛物线的解析式为y=a(x+1)2+2,把(1,0)代入解得a=﹣,故④正确,如图,连接AD交抛物线的对称轴于P,连接PB,则此时△BDP的周长最小,最小值=PD+PB+BD=PD+PA+BD=AD+BD,∵AD==3,BD==,∴△PBD周长最小值为3,故⑤正确.故选D.【题目点拨】本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.5、C【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【题目详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【题目点拨】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.6、C【分析】根据OA=OB=OC=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【题目详解】,四边形是平行四边形且,是矩形,题目没有条件说明对角线相互垂直,∴A、B、D都不正确;故选:C【题目点拨】本题是考查矩形的判定方法,常见的又3种:①一个角是直角的四边形是矩形;②三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.7、A【分析】连接OE,由菱形的性质得出∠D=∠B=70°,AD=AB=3,得出OA=OD=1.5,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.【题目详解】连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=70°,AD=AB=3,∴OA=OD=1.5,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的长=.故选:A.【题目点拨】此题考查菱形的性质、弧长计算,根据菱形得到需要的边长及角度即可代入公式计算弧长.8、A【分析】①对称轴为,得;②函数图象与x轴有两个不同的交点,得;③当时,,当时,,得;④由对称性可知时对应的y值与时对应的y值相等,当时【题目详解】解:由图象可知,对称轴为,,,①正确;∵函数图象与x轴有两个不同的交点,,②正确;当时,,当时,,③正确;由对称性可知时对应的y值与时对应的y值相等,∴当时,④错误;故选A.【题目点拨】考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.9、D【分析】首先根据二次函数解析式确定抛物线的对称轴为x=1,再根据抛物线的增减性以及对称性可得y1,y1,y3的大小关系.【题目详解】∵二次函数y=-x1+4x+c=-(x-1)1+c+4,∴对称轴为x=1,∵a<0,∴x<1时,y随x增大而增大,当x>1时,y随x的增大而减小,∵(-1,y1),(1,y1),(3,y3)在二次函数y=-x1+4x+c的图象上,且-1<1<3,|-1-1|>|1-3|,∴y1<y3<y1.故选D.【题目点拨】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,关键是掌握二次函数图象上点的坐标满足其解析式.10、C【题目详解】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴,∴,∴OF=2.故选C.考点:1.切线的性质;2.菱形的性质.11、B【分析】根据一元一次不等式的解法进行求解即可.【题目详解】解:移项得,,合并得,,系数化为1得,.故选:B.【题目点拨】本题考查一元一次不等式的解法,属于基础题型,明确解法是关键.12、D【分析】根据题意利用合并同类项法则、完全平方公式、同底数幂的乘法运算法则及幂的乘方运算法则,分别化简求出答案.【题目详解】解:A.合并同类项,系数相加字母和指数不变,,此选项不正确;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此选项错误;C.,同底数幂乘法底数不变指数相加,a2·a3=a5,此选项不正确;D.,幂的乘方底数不变指数相乘,(-a)4=(-1)4.a4=a4,此选项正确.故选:D【题目点拨】本题考查了有理式的运算法则,合并同类项的关键正确判断同类项,然后按照合并同类项的法则进行合并;遇到幂的乘方时,需要注意若括号内有“-”时,其结果的符号取决于指数的奇偶性.二、填空题(每题4分,共24分)13、【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【题目详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE为Rt△ACB斜边的中线,∴,在△CEM中,,即,∴CM的最大值为.故答案为:.【题目点拨】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.14、②④【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②连接IB,根据点I是△ABC的内心,得到,可以证得,即有,可以判断②正确;③当OI最小时,经过圆心O,作,根据等腰直角三角形的性质和勾股定理,可求出,可判断③错误;④用反证法证明即可.【题目详解】解:平分,AB是⊙O的直径,,,是的直径,是半圆的中点,即点是定点;故①错误;如图示,连接IB,∵点I是△ABC的内心,∴又∵,∴即有∴,故②正确;如图示,当OI最小时,经过圆心O,过I点,作,交于点∵点I是△ABC的内心,经过圆心O,∴,∵∴是等腰直角三角形,又∵,∴,设,则,,∴,解之得:,即:,故③错误;假设,∵点C是半圆AB上一动点,则点C在半圆AB上对于任意位置上都满足,如图示,当经过圆心O时,,,∴与假设矛盾,故假设不成立,∴故④正确;综上所述,正确的是②④,故答案是:②④【题目点拨】此题考查了三角形的内心的定义和性质,等腰直角三角形的判定与性质,三角形外接圆有关的性质,角平分线的定义等知识点,熟悉相关性质是解题的关键.15、【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【题目详解】解:根据题意,得:.故答案为:.【题目点拨】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为:.16、【分析】作辅助线证明△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,利用等边三角形面积公式S=即可解题.【题目详解】解:连接DE,OD,OE,在圆中,OA=OD=OE=OB,∵△ABC是等边三角形,∴∠A=60°,∴△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,∵AB=4,即OA=OD=OE=OB=2,易证阴影部分面积=S△CDE==.【题目点拨】本题考查了圆的性质,等边三角形的判定和面积公式,属于简单题,作辅助线证明等边三角形是解题关键.17、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)【分析】根据相似三角形的判定解答即可.【题目详解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案为:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【题目点拨】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.18、5【解题分析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=5三、解答题(共78分)19、(1)y=-x2-2x+6;(2)存在,D(,);(2)-4≤t<-2或0<t≤1.【分析】(1)根据点A的坐标结合线段AB的长度,可得出点B的坐标,根据点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(2)由抛物线解析式,求出顶点C的坐标,从而求出直线BC解析式,设D(d,-2d+4),根据已知可知AD=AB=6时,△ABC∽△BAD,从而列出关于d的方程,解方程即可求解;(2)将抛物线的表达式变形为顶点时,依此代入点A,B的坐标求出t的值,再结合图形即可得出:当抛物线与线段AB有且只有一个公共点时t的取值范围.【题目详解】(1)∵点A的坐标为(-4,-2),将点A向右平移6个单位长度得到点B,∴点B的坐标为(2,-2).∵抛物线y=-x2+bx+c过点,∴,解得∴抛物线表达式为y=-x2-2x+6(2)存在.如图由(1)得,y=-x2-2x+6=-(x+1)2+7,∴C(-1,7)设直线BC解析式为y=kx+b∴解之得,∴lBC:y=-2x+4设D(d,-2d+4),∵在△ABC中AC=BC∴当且仅当AD=AB=6时,两三角形相似即(-4-d)2+(-2+2d-4)2=26时,△ABC∽△BAD,解之得,d1=、d2=2(舍去)∴存在点D,使△ABC和以点A,B,D构成的三角形相似,此时点D(,);(2)如图:抛物线y=-x2+bx+c顶点在直线上∴抛物线顶点坐标为∴抛物线表达式可化为.把代入表达式可得解得.又∵抛物线与线段AB有且只有一个公共点,∴-4≤t<-2.把代入表达式可得.解得,又∵抛物线与线段AB有且只有一个公共点,∴0<t≤1.综上可知的取值范围时-4≤t<-2或0<t≤1.【题目点拨】本题考查了点的坐标变化、待定系数法求二次函数解析式、二次函数图象上点的坐标特征以及三角形相似,解题的关键是:(1)根据点的变化,找出点B的坐标,根据点A,B的坐标,利用待定系数法求出抛物线的表达式;(2)假设△ABC∽△BAD,列出关于d的方程,(2)代入点A,B的坐标求出t值,利用数形结合找出t的取值范围.20、,【分析】根据配方法解一元二次方程的步骤,解方程即可.【题目详解】解:移项得x2﹣6x=7,配方得x2﹣6x+9=7+9,即,∴-3=±4,∴,.【题目点拨】本题考查了配方法解一元二次方程,正确配方是解题的关键:“当二次项系数为1时,方程两边同时加一次项系数一半的平方”.21、(1)k=-1;(2)x<﹣2或0<x<2.【解题分析】试题分析:(1)过点A作AD垂直于OC,由,得到,确定出△ADO与△ACO面积,即可求出k的值;

(2)根据函数图象,找出满足题意x的范围即可.解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,∴S△ADO=S△ACD=6,∴k=-1;(2)根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.22、(1)①“匀称中线”是BE,它是AC边上的中线,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“匀称中线”.理由见解析.【分析】(1)①先作出Rt△ABC的三条中线AD、BE、CF,然后利用匀称中线的定义分别验证即可得出答案;②设AC=2a,利用勾股定理分别把BC,AB的长度求出来即可得出答案.(2)由②知:AC:AD:CD=,设AC=,则AD=2a,CD=,过点C作CH⊥AB,垂足为H,利用的面积建立一个关于a的方程,解方程即可求出CD的长度;假设CM是△ACD的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【题目详解】(1)①如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE,它是AC边上的中线,②设AC=2a,则CE=a,BE=2a,在Rt△BCE中∠BCE=90°,∴BC=,在Rt△ABC中,AB=,∴BC:AC:AB=(2)由旋转可知,∠DAE=∠BAC=45°.AD=AB>AC,∴∠DAC=∠DAE+∠BAC=90°,AD>AC,∵Rt△ACD是“匀称三角形”.由②知:AC:AD:CD=设AC=,则AD=2a,CD=,如图②,过点C作CH⊥AB,垂足为H,则∠AHC=90°,∵∠BAC=45°,∴∵解得a=2,a=﹣2(舍去),∴判断:CM不是△ACD的“匀称中线”.理由:假设CM是△ACD的“匀称中线”.则CM=AD=2AM=4,AM=2,∴又在Rt△CBH中,∠CHB=90°,CH=,BH=4-,∴即这与∠AMC=∠B相矛盾,∴假设不成立,∴CM不是△ACD的“匀称中线”.【题目点拨】本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.23、(1)1,1,0(2)作图见解析(3)必过点.(答案不唯一)(4)【分析】(1)根据待定系数法求出的值,再代入和,即可求出m、n的值;(2)根据描点法画出函数的图象即可;(3)根据(2)中函数的图象写出其中一个性质即可;(4)利用图象法,可得函数与有三个不同的交点,根据二次函数的性质求解即可.【题目详解】(1)将代入中解得∴当时,当时,;(2)如图所示;(3)必过点;(4)设直线,由(1)得∵方程有三个不同的解∴函数与有三个不同的交点根据图象即可知,当方程有三个不同的解时,故.【题目点拨】本题考查了函数的图象问题,掌握待定系数法、描点法、图象法、二次函数的性质是解题的关键.24、(1)(1,0),E、D、;(2);(3)【分析】(1)根据定义即可得到点的坐标,过点E作的切线EM,连接OM,利用三角函数求出∠MEO=30°,即可得到点E是的“伴侣点”;根据点F、D、的坐标得到线段长度与线段OE比较即可判定是否是的“伴侣点”;(2)根据题意求出,∠OGF=60°,由点是的“伴侣点”,过点P作的切线PA、PB,连接OP,OB,证明△OPG是等边三角形,得到点P应在线段PG上,过点P作PH⊥x轴于H,求出点P的横坐标是-,由此即可得到点P的横坐标m的取值范围;(3)设点(x,-2x+6),P(m,n),根据派生点的定义得到3m+n=6,由此得到点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OH⊥AB于H,交于点C,求出AB的长,再根据面积公式求出OH即可得到答案.【题目详解】(1)∵,∴点的派生点坐标为(1,0),∵E(0,-2),∴OE=2,过点E作的切线EM,连接OM,∵OM=1,OE=2,∠OME=90°,∴sin∠MEO=,∴∠MEO=30°,而在的左侧也有一个切点,使得组成的角等于30°,∴点E是的“伴侣点”;∵,∴OF=>OE,∴点F不可能是的“伴侣点”;∵,(1,0),,,∴点D、是的“伴侣点”,∴的“伴侣点”有:E、D、,故答案为:(1,0),E、D、;(2)如图,直线l交y轴于点G,∵,∴,∠OGF=60°∵直线上的点是的“伴侣点”,∴过点P作的切线PA、PB,且∠APB=60°,连接OP,OB,∴∠BOP=30°,∵∠OBP=90°,OB=1,∴OP=2=OG,∴△OPG是等边三角形,∴若点P是的“伴侣点”,则点P应在线段PG上,过点P作PH⊥x轴于H,∵∠POH=90°-60°=30°,OP=2,∴PH=1,∴OH=,即点P的横坐标是-,∴当直线上的点是的“伴侣点”时的取值范围是;(3)设点(x,-2x+6),P(m,n),根据题意得:m+n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论