2024届怀化市重点中学数学九上期末经典模拟试题含解析_第1页
2024届怀化市重点中学数学九上期末经典模拟试题含解析_第2页
2024届怀化市重点中学数学九上期末经典模拟试题含解析_第3页
2024届怀化市重点中学数学九上期末经典模拟试题含解析_第4页
2024届怀化市重点中学数学九上期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届怀化市重点中学数学九上期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数 B.方差 C.中位数 D.极差2.对于抛物线,下列说法中错误的是()A.顶点坐标为B.对称轴是直线C.当时,随的增大减小D.抛物线开口向上3.用配方法解方程,经过配方,得到()A. B. C. D.4.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.3 B.-3 C.-1 D.15.如图,矩形AOBC,点C在反比例的图象上,若,则的长是()A.1 B.2 C.3 D.46.如图,的直径的长为,弦长为,的平分线交于,则长为()A.7 B.7 C.8 D.97.已知反比例函数的图象经过点,则的值是()A. B. C. D.8.抛物线的顶点坐标为A. B. C. D.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形10.方程x2-2x=0的根是()A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=-211.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是()A. B. C. D.12.已知方程的两根为,则的值为()A.-1 B.1 C.2 D.0二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.14.已知:如图,在中,于点,为的中点,若,,则的长是_______.15.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是.16.如图,把小圆形场地的半径增加5米得到大圆形场地,场地面积扩大了一倍.则小圆形场地的半径是______米.17.如图,与关于点成中心对称,若,则______.18.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.三、解答题(共78分)19.(8分)有这样一个问题,如图1,在等边中,,为的中点,,分别是边,上的动点,且,若,试求的长.爱钻研的小峰同学发现,可以通过几何与函数相结合的方法来解决这个问题,下面是他的探究思路,请帮他补充完整.(1)注意到为等边三角形,且,可得,于是可证,进而可得,注意到为中点,,因此和满足的等量关系为______.(2)设,,则的取值范围是______.结合(1)中的关系求与的函数关系.(3)在平面直角坐标系中,根据已有的经验画出与的函数图象,请在图2中完成画图.(4)回到原问题,要使,即为,利用(3)中的图象,通过测量,可以得到原问题的近似解为______(精确到0.1)20.(8分)已知二次函数y=a−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),21.(8分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.22.(10分)对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和,,所以.(1)计算:,;(2)小明在计算时发现几个结果都为正整数,小明猜想所有的均为正整数,你觉得这个猜想正确吗?请判断并说明理由;(3)若,都是“相异数”,其中,(,,、都是正整数),当时,求的最大值.23.(10分)如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,(1)求证:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.24.(10分)如图所示,在中,于点E,于点F,延长AE至点G,使EG=AE,连接CG.(1)求证:;(2)求证:四边形EGCF是矩形.25.(12分)新区一中为了了解同学们课外阅读的情况,现对初三某班进行了“你最喜欢的课外书籍类别”的问卷调查.用“"表示小说类书籍,“”表示文学类书籍,“”表示传记类书籍,“”表示艺术类书籍.根据问卷调查统计资料绘制了如下两副不完整的统计图.请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了名学生,请补全条形统计图;(2)在接受问卷调查的学生中,喜欢“”的人中有2名是女生,喜欢“”的人中有2名是女生,现分别从喜欢这两类书籍的学生中各选1名进行读书心得交流,请用画树状图或列表法求出刚好选中2名是一男一女的概率.26.已知抛物线.(1)若,,,求该抛物线与轴的交点坐标;(2)若,且抛物线在区间上的最小值是-3,求的值.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【题目详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2、C【分析】A.将抛物线一般式化为顶点式即可得出顶点坐标,由此可判断A选项是否正确;B.根据二次函数的对称轴公式即可得出对称轴,由此可判断B选项是否正确;C.由函数的开口方向和顶点坐标即可得出当时函数的增减性,由此可判断C选项是否正确;D.根据二次项系数a可判断开口方向,由此可判断D选项是否正确.【题目详解】,∴该抛物线的顶点坐标是,故选项A正确,对称轴是直线,故选项B正确,当时,随的增大而增大,故选项C错误,,抛物线的开口向上,故选项D正确,故选:C.【题目点拨】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.在本题中能将二次函数一般式化为顶点式(或会用顶点坐标公式计算)得出顶点坐标是解决此题的关键.3、D【分析】通过配方法的步骤计算即可;【题目详解】,,,,故答案选D.【题目点拨】本题主要考查了一元二次方程的配方法应用,准确计算是解题的关键.4、B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a、b的值即可.【题目详解】∵点A(1,a)、点B(b,2)关于原点对称,∴a=﹣2,b=﹣1,∴a+b=﹣3.故选B.【题目点拨】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.5、B【分析】根据OB的长度即为点C的横坐标,代入反比例函数的解析式中即可求出点C的纵坐标,即BC的长度,再根据矩形的性质即可求出OA.【题目详解】解:∵∴点C的横坐标为1将点C的横坐标代入中,解得y=2∴BC=2∵四边形AOBC是矩形∴OA=BC=2故选B.【题目点拨】此题考查的是根据反比例函数解析式求点的坐标和矩形的性质,掌握根据反比例函数解析式求点的坐标和矩形的性质是解决此题的关键.6、B【解题分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7.【题目详解】作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB,∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,,∴DA=DB,∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG,∵AC=6,BC=8,∴AF=1,∴CF=7,∵△CDF是等腰直角三角形,∴CD=7,故选B.【题目点拨】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等,综合性较强,有一定的难度,正确添加辅助线、熟练应用相关知识是解题的关键.7、A【分析】把代入反比例函数的解析式即可求解.【题目详解】把代入得:k=-4故选:A【题目点拨】本题考查的是求反比例函数的解析式,掌握反比例函数的图象和性质是关键.8、B【分析】利用顶点公式,进行计算【题目详解】顶点坐标为故选B.【题目点拨】本题考查二次函数的性质,熟练运用抛物线顶点的公式是解题关键.9、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【题目详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【题目点拨】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.10、C【解题分析】根据因式分解法解一元二次方程的方法,提取公因式x可得x(x-2)=0,然后按照ab=0的形式的方程解法,可得x=0或x-2=0,解得x1=0,x2=2.故选C.点睛:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.11、D【分析】通过画图发现,点的运动路线为以A为圆心、1为半径的圆,当在对角线CA上时,C最小,先证明△PBC≌△BA,则A=PC=1,再利用勾股定理求对角线CA的长,则得出C的长.【题目详解】如图,当在对角线CA上时,C最小,连接CP,

由旋转得:BP=B,∠PB=90°,

∴∠PBC+∠CB=90°,

∵四边形ABCD为正方形,

∴BC=BA,∠ABC=90°,

∴∠AB+∠CB=90°,

∴∠PBC=∠AB,在△PBC和△BA中,,

∴△PBC≌△BA,

∴A=PC=1,

在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C长度的最小值为,故选:D.【题目点拨】本题考查了正方形的性质、旋转的性质和最小值问题,寻找点的运动轨迹是本题的关键.12、D【分析】先根据一元二次方程的解的定义得到a2-a-1=1,即a2-a=1,则a2-2a-b可化简为a2-a-a-b,再根据根与系数的关系得a+b=1,ab=-1,然后利用整体代入的方法计算.【题目详解】解:∵a是方程的实数根,

∴a2-a-1=1,

∴a2-a=1,

∴a2-2a-b=a2-a-a-b=(a2-a)-(a+b),

∵a、b是方程的两个实数根,

∴a+b=1,

∴a2-2a-b=1-1=1.

故选D.【题目点拨】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=,x1⋅x2=.二、填空题(每题4分,共24分)13、(2,6)【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【题目详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,∴在Rt△CMF中,∴点C的坐标为(2,6).故答案为(2,6).【题目点拨】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.14、【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【题目详解】解:∵△ABC中,AD⊥BC,∴∠ADC=90°.∵E是AC的中点,DE=5,CD=8,∴AC=2DE=1.∴AD2=AC2−CD2=12−82=2.∴AD=3.故答案为:3.【题目点拨】本题主要考查了直角三角形的性质,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.15、15°【分析】先根据旋转的性质,求得∠BAB'的度数,再根据∠BAC=35°,求得∠B′AC的度数即可.【题目详解】∵将绕点顺时针方向旋转50°得到,∴,又∵,∴,故答案为:15°.【题目点拨】本题主要考查了旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.16、【分析】根据等量关系“大圆的面积=2×小圆的面积”可以列出方程.【题目详解】设小圆的半径为xm,则大圆的半径为(x+5)m,根据题意得:π(x+5)2=2πx2,解得,x=5+5或x=5-5(不合题意,舍去).故答案为5+5.【题目点拨】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.17、【分析】由题意根据中心对称的定义可得AB=DE,从而即可求值.【题目详解】解:与△DEC关于点成中心对称,.【题目点拨】本题主要考查了中心对称的定义,解题的关键是熟记中心对称的定义即把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.18、30°【解题分析】根据点的坐标得到OD,OC的长度,利用勾股定理求出CD的长度,由此求出∠OCD的度数;由于∠OBD和∠OCD是弧OD所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD的度数.【题目详解】连接CD.由题意得∠COD=90°,∴CD是⊙A的直径.∵D(0,1),C(,0),∴OD=1,OC=,∴CD==2,∴∠OCD=30°,∴∠OBD=∠OCD=30°.(同弧或等弧所对的圆周角相等)

故答案为30°.【题目点拨】本题考查圆周角定理以及推论,可以结合圆周角进行解答.三、解答题(共78分)19、(1);(2),;(3)答案见解析;(4)1.1.【分析】(1)利用相似三角形的性质即可解决问题.

(2)求出当点F与点A重合时BE的值即可判断x的取值范围.

(3)利用描点法画出函数图象即可.

(4)画出两个函数图象,量出点P的横坐标即可解决问题.【题目详解】解:(1)由,可得,∵,∴.故答案为:(2)由题意:.∵由,可得,∵,,.∴,∴.故答案为:;.(3)函数图象如图所示:(4)观察图象可知两个函数的交点P的横坐标约为1.1,故BE=1.1

故答案为1.1.【题目点拨】本题属于一次函数综合题,考查了相似三角形的判定和性质,函数图象等知识,学会利用图象法解决问题是解题的关键.20、(1),;(2)当x<或x>5时,函数值大于1.【分析】(1)把(-1,1)和点(2,-9)代入y=ax2-4x+c,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x轴的交点坐标后即可确定正确的答案.【题目详解】解:(1)∵二次函数的图象过点(−1,1)和点(2,−9),∴,解得:,∴;∴对称轴为:;(2)令,解得:,,如图:∴点A的坐标为(,1),点B的坐标为(5,1);∴结合图象得到,当x<或x>5时,函数值大于1.【题目点拨】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.21、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),当x=3时,S有最大值;(3)(0,﹣)【分析】(1)设出解析式,由待定系数法可得出结论;(2)点E在抛物线上,用x去表示y,结合三角形面积公式即可得出三角形OEB的面积S与x之间的函数关系式,再由E点在x轴下方,得出1<x<1,将三角形OEB的面积S与x之间的函数关系式配方,即可得出最值;(3)找出D点关于y轴对称的对称点D′,结合三角形内两边之和大于第三边,即可确定当MD+MB最小时M点的坐标.【题目详解】解:(1)设抛物线解析式为y=ax2+bx+c,则,解得:.故抛物线解析式为y=x2﹣4x+.(2)过点E作EF⊥x轴,垂足为点F,如图1所示.E点坐标为(x,x2﹣4x+),F点的坐标为(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵点E(x,y)是抛物线上一动点,且在x轴下方,∴1<x<1.三角形OEB的面积S=OB•EF=×1×(﹣x2+4x﹣)=﹣(x﹣3)2+(1<x<1=.当x=3时,S有最大值.(3)作点D关于y轴的对称点D′,连接BD′,如图2所示.∵抛物线解析式为y=x2﹣4x+=(x﹣3)2﹣,∴D点的坐标为(3,﹣),∴D′点的坐标为(﹣3,﹣).由对称的特性可知,MD=MD′,∴MB+MD=MB+MD′,当B、M、D′三点共线时,MB+MD′最小.设直线BD′的解析式为y=kx+b,则,解得:,∴直线BD′的解析式为y=x﹣.当x=0时,y=﹣,∴点M的坐标为(0,﹣).【题目点拨】本题考查了待定系数法求二次函数和一次函数解析式、轴对称的性质、利用二次函数求最值等知识.解题的关键是:(1)能够熟练运用待定系数法求解析式;(2)利用三角形面积公式找出三角形面积的解析式,再去配方求最值;(3)利用轴对称的性质确定M点的位置.22、(1)10;12.(2)猜想正确.理由见解析;(3).【分析】(1)根据“相异数”的定义即可求解;(2)设的三个数位数字分别为,,,根据“相异数”的定义列出即可求解;(3)根据,都是“相异数”,得到,,根据求出x,y的值即可求解.【题目详解】(1);.(2)猜想正确.设的三个数位数字分别为,,,即,.因为,,均为正整数,所以任意为正整数.(3)∵,都是“相异数”,∴;.∵,∴,∴,∵,,且,都是正整数,∴或或或,∵是“相异数”,∴;∵是“相异数”,∴,∴满足条件的有,或,或,∴或或,∴的最大值为.【题目点拨】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.23、(1)证明见解析(1)【解题分析】试题分析:(1)欲证明△EBC是等腰三角形,只需推知BC=BE即可,可以由∠1=∠3得到:BC=BE;(1)通过相似三角形△COD∽△EOB的对应边成比例得到,然后利用分式的性质可以求得.解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠1=∠1.∵CE平分∠BCD,∴∠1=∠3,∴∠1=∠3,∴BC=BE,∴△EBC是等腰三角形;(1)∵∠1=∠1,∠4=∠5,∴△COD∽△EOB,∴=.∵平行四边形ABCD,∴CD=AB=2.∵BE=BC=5,∴==,∴=.点睛:本题考查了平行四边形的性质,相似三角形的判定与性质以及等腰三角形的判定.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用三角形相似的性质时主要利用相似比计算相应线段的长.24、(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质可得,进而可得,由,得,由AAS证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论