




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数控系统的刀具半径补偿技术研究(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)
第33卷第2期2005年4月数控系统的刀具半径补偿技术研究(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)浙江工业大学学报JOURNALOFZHEJIANGUNIVERSITYOFTECHNOLOGYVol.33No.2Apr.2005收稿日期:2004-10-04:数控系统的刀具半径补偿技术研究王凌云1,和延立2,姚伟1(1.湖南科技职业学院机电系,湖南长沙410004;2.西北工业大学机电工程学院,陕西西安710072摘要:数控系统的刀具半径补偿是在CNC系统内部由计算机自动完成的.在加工过程中,CNC系统根据零件轮廓尺寸、刀具运动的方向指令(G40,G41,G42以及实际加工中所用的刀具半径值自动计算出刀具中心轨迹,完成对零件的加工.介绍了C功能刀具半径补偿原理,根据平面内刀具半径补偿转接过渡的不同转接类型,针对C功能刀补的工程实际应用,提出了交角转接及直接转接两程序段间的软件实现方法.针对实际轮廓加工过程中刀具半径补偿的执行过程:刀具补偿建立、刀具补偿维持及刀具补偿撤消,结合所用的数控系统和刀具,编制了凸轮轮廓的加工程序.实践证明,C功能刀具半径补偿方法切实可行,且效率高.关键词:C功能刀补;转接形式;软件实现;实际应用中图分类号:TH503.15文献标识码:A文章编号:1006-4303(200502-0219-04TheresearchofcnccutterradiuscompensationtechnologyWANGLing-yun1,HEYan-li2,YAOWei1(1.DepartmentofMechanicalEngineering,HunanVocationalInstituteofScience&Technology,Changsha410004,China;2.CollegeofMechanicalandElectricalEngineering,NorthwesternPolytechnicUniversity,Xi'an710072,ChinaAbstract:CutterradiuscompensationisperformedautomaticallybycomputerinCNCsystem.Duringthepartmachiningprocedure,CNCsystemperformscontourmachiningbycalculatingthecuttertipcentertrajectoryautomatically,accordingtothepartcontour,theG-codeofthecutteroffsetdirection(G40,G41,G42andthesizeofthecutterradius.ThetheoryofCfunctioncutterradiuscompensationispresented.TheJoin-Turningtypeandthemethodofsoftwareperformanceisanalyzed.Thepracticaluseisresearched.ThecampartprofileprogramdiscussedisbasedontheCNCsystem,thecutterselectedandtheperformanceprocedureofcutterradiuscompensation:settingup,maintenanceandcancellation.ItisprovedthattheCfunctioncutterradiuscompensationisefficientanduseful.Keywords:cutterradiuscompensation;join-turningtype;softwareperformance;practicaluse0引言刀具半径补偿是CNC技术的核心算法,刀具半径补偿功能是数控系统根据加工轮廓的加工程序和刀具中心偏移量,自动计算出刀具中心轨迹[1].当前主要应用C刀具补偿方法得到刀具中心轨迹,CNC系统内部根据C功能刀具补偿的工作状态,同时存有三个程序段的信息[2].C功能刀补采用直线或圆弧过渡,直接求出刀具中心轨迹交点.采用C刀补方法能有效地避免刀具干涉,改善了尖角加工的工艺性,也提高了加工效率.刀具补偿方法是加工轨迹插补运算的数据来源和依据,是平面轮廓加工必须解决的重要内容[3].1程序段间转接情况分类及软件实现方法C刀具半径补偿是采用交角转接或直接转接的方法,CNC自动计算出本程序段与下一程序段刀具中心轨迹的交点坐标[4].前后两程序段轮廓轨迹转接情况有:直线与直线转接;圆弧与圆弧转接;直线与圆弧或圆弧与直线转接.根据相邻两程序段轮廓轨迹的转接情况,可导出计算刀具中心轨迹的交点坐标的公式.根据两段轮廓的夹角(相邻两段轮廓的切线在交点处工件侧的夹角的大小,可将轮廓的转接类型分为三种:缩短型、伸长型和插入型[5].当180°<<360°时,刀具中心轨迹的长度小于实际编程轨迹的长度,这种转换接为缩短型;当90°<<180°时,刀具中心轨迹的长度大于或等于实际编程轨迹的长度,这种转接为伸长型;当0°<<90°时,不仅刀具中心轨迹的长度大于实际编程轨迹的长度,而且要插入一段直线或圆弧,这种转接为插入型.为了便于刀具中心轨迹的交点坐标的计算及对各种编程情况进行分析,将程序段的轮廓轨迹、刀具半径都当作矢量看待[6].直线段矢量方向从起点指向终点,圆弧起点及终点的半径为矢量,方向由圆心指向起点或终点,刀具半径的矢量方向由零件加工程序段轮廓指向刀具圆心,其大小等于刀具半径,在加工过程中始终垂直于轮廓轨迹.1.1直线与直线的转接1.1.1转接形式分类在图1和图2中,第一段刀具中心轨迹为JC,下一段刀具中心轨迹为DK,OA为第一段编程矢量,AF为第二段编程矢量,夹角即为逆时针方向的∠GAF.图1G41G01/G41G01直线—直线转接由图1(左刀补直线接直线和图2(右刀补直线接直线可知,直线与直线转接有三种类型:缩短型、伸长型和插入型.图2G42G01/G42G01直线—直线转接直线—直线转接的各种形式分类见表1.表1中插入(1为左刀补(G41插入型转接,插入(2为右刀补(G42插入型转接.表1直线—直线转接形式分类编程轨迹的连接刀具补偿方向sin≥0cos≥0象限转接类型对应图号G41G01/G41G01G4111I10II00III01IV缩短插入(1伸长图1(a图1(b图1(c图1(dG42G01/G42G01G4211I10II00III01IV伸长插入(2缩短图2(a图2(b图2(c图2(d1.1.2转接形式分类的软件实现框图直线接直线的转接形式分类可用图3的程序来・220・浙江工业大学学报第33卷图3直线-直线转接分类软件实现框图1.2圆弧与圆弧的转接如图4所示,当圆弧轨迹PA与下一段圆弧AQ相接时,A点为PA与AQ的交点,O1A为圆弧PA的终点半径矢量,OA为圆弧PA在终点A处的切线,O2A为圆弧AQ的起点半径矢量,AF为圆弧AQ在A点的切线.圆弧接圆弧的转接形式分类见表2.图4G41圆弧—圆弧转接表2圆弧接圆弧的转接形式分类编程轨迹的连接刀补方向sin≥0cos≥0象限转接形式对应图号G41G03/G41G03G41G02/G41G02G41G02/G41G03G41G03/G41G02G41+(1+(1-(0-(0+(1-(0-(0+(1ⅠⅡⅢⅣ缩短型缩短型左刀补插入伸长型图4(a图4(b图4(c图4(d图4与图1比较可知,它们的转接形式分类和判别是完全相同的,即当刀具半径左补偿顺圆接顺圆G41G02/G41G02时,它的转接类型的判别等效于刀具半径左补偿中的直线接直线G41G01/G41G01(G42圆弧—圆弧的转接类型的判别与G42直线接直线G42G01/G42G01的等效关系依此类推.1.3直线—圆弧或圆弧—直线转接两者的转接形式分类仍可以两段轮廓矢量之夹角∠GAF=作为判别依据,可借用圆弧—圆弧转接形式分类(如表2所示,其转接形式也有缩短型、伸长型和插入型三种.圆弧与圆弧转接、直线与圆弧转接和圆弧与直2刀具半径补偿的建立、维持和撤消在轮廓加工时,刀具半径补偿的执行通常按三个阶段进行:刀具半径补偿建立阶段、刀具半径补偿维持阶段和刀具半径补偿撤消阶段.三个阶段的转接类型都可分为缩短型、伸长型和插入型三类.2.1刀具半径补偿建立阶段刀具从原点接近工件,刀具中心轨迹由G41或G42确定,在原来的程序轨迹基础上伸长或缩短一个刀具半径值,即刀具中心从与编程轨迹重合过渡到与编程轨迹偏离一个刀具半径值的距离[7].2.2刀具半径补偿维持阶段一旦建立了刀具补偿状态,则一直维持该状态,・221・第2期王凌云,等:数控系统的刀具半径补偿技术研究轨迹始终偏离编程轨迹一个刀具半径值的距离.2.3刀具半径补偿撤消阶段刀具撤离工件,回到原点.与建立刀具补偿时一样,刀具中心轨迹也要比编程轨迹伸长或缩短一个刀具半径值的距离.即刀具中心轨迹从与编程轨迹相距一个刀具的半径值过渡到与编程轨迹重合.刀具补偿撤消用G40指令.3刀具半径补偿的应用在华中数控铣系统中,用12mm的平底立铣刀加工如图5所示(图中尺寸数字单位为mm,凸轮轮廓的程序如下:图5平底立铣刀加工图O1111N05G92X0Y0Z30N10G90G00G41D01X50Y-70M03S800N15G01Z-7F20N20X0Y-55F100N25G02X0Y55R55N30X23.570Y38.333R25N35G01X32.998Y11.667N40G02X32.998Y-11.667R35N45G01X23.570Y-38.333N50G02X0Y-55R25N55G01X-10N60G00Z30N65G40X0Y0N70M05M304结论对CNC系统刀具半径补偿关键技术进行了理论分析.本文所编写的刀具半径补偿工件轮廓加工程序,是采用C功能刀具半径补偿技术解决实际零件加工.与从前所用的B功能刀补相比,既方便了编程人员的操作,又不致于造成被加工工件的过切和欠切.经过长时间应用和检验,C功能刀补被证明是切实可行的、高效的.参考文献:[1]刘雄伟.数控加工理论与编程技术[M].北京:机械工业出版社,2001.[2]王润孝.机床数控原理与系统[M].西安:西北工业大学出版社,1997.[3]中国机械工业教育协会.数控技术[M].北京:机械工业出版社,2001.[3]王爱玲.现代数控原理及控制系统[M].北京:国防工业出版社,2002.[4]廖效果.数字控制机床[M].武汉:华中理工大学出版社,1992.[5]HoschekJ.Splineapproximationofoffsetcurves[J].ComputerAidedGeometricDesign,1989,20(5:33-40.[6]ChoiBJ.Ball-endcutterinterferenceavoidanceinNCmachiningofsculpturedsurface[J].ComputerAidedDesign,1989,21(6:371-378.[7]SaeedSE,DodsworthJR.Offsettingingeometricmodeling[J].ComputerAidedDesign,1988,20(2:67-74.(责任编辑:刘岩・222・浙江工业大学学报第33卷Athesissubmittedtoinpartialfulfillment3.3数控刀具材料及选用先进的加工设备与高性能的数控刀具相配合,才能充分发挥其应有的效能,取得良好的经济效益。随着刀具材料迅速发展,各种新型刀具材料,其物理、力学性能和切削加工性能都有了很大的提高,应用范围也不断扩大。3.3.1刀具材料应具备基本性能刀具材料的选择对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用。因此,刀具材料应具备如下一些基本性能:硬度和耐磨性。刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。刀具材料的硬度越高,耐磨性就越好。强度和韧性。刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。耐热性。刀具材料的耐热性要好,能承受高的切削温度,具备良好的抗氧化能力。工艺性能和经济性。刀具材料应具备好的锻造性能、热处理性能、焊接性能;磨削加工性能等,而且要追求高的性能价格比。3.3.2刀具材料的种类、性能、特点、应用1.金刚石刀具材料的种类、性能和特点及刀具应用金刚石是碳的同素异构体,它是自然界已经发现的最硬的一种材料。金刚石刀具具有高硬度、高耐磨性和高导热性能,在有色金属和非金属材料加工中得到广泛的应用。尤其在铝和硅铝合金高速切削加工中,金刚石刀具是难以替代的主要切削刀具品种。可实现高效率、高稳定性、长寿命加工的金刚石刀具是现代数控加工中不可缺少的重要工具。⑴金刚石刀具的种类①天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002μm,能实现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。②PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石(PCD),自20世纪70年代初,采用高温高压合成技术制备的聚晶金刚石(Polycrystauinediamond,简称PCD刀片研制成功以后,在很多场合下天然金刚石刀具已经被人造聚晶金刚石所代替。PCD原料来源丰富,其价格只有天然金刚石的几十分之一至十几分之一。PCD刀具无法磨出极其锋利的刃口,加工的工件表面质量也不如天然金刚石,现在工业中还不能方便地制造带有断屑槽的PCD刀片。因此,PCD只能用于有色金属和非金属的精切,很难达到超精密镜面切削。③CVD金刚石刀具:自从20世纪70年代末至80年代初,CVD金刚石技术在日本出现。CVD金刚石是指用化学气相沉积法(CVD)在异质基体(如硬质合金、陶瓷等)上合成金刚石膜,CVD金刚石具有与天然金刚石完全相同的结构和特性。CVD金刚石的性能与天然金刚石相比十分接近,兼有天然单晶金刚石和聚晶金刚石(PCD)的优点,在一定程度上又克服了它们的不足。⑵金刚石刀具的性能特点:①极高的硬度和耐磨性:天然金刚石是自然界已经发现的最硬的物质。金刚石具有极高的耐磨性,加工高硬度材料时,金刚石刀具的寿命为硬质合金刀具的lO~100倍,甚至高达几百倍。②具有很低的摩擦系数:金刚石与一些有色金属之间的摩擦系数比其他刀具都低,摩擦系数低,加工时变形小,可减小切削力。③切削刃非常锋利:金刚石刀具的切削刃可以磨得非常锋利,天然单晶金刚石刀具可高达0.002~0.008μm,能进行超薄切削和超精密加工。④具有很高的导热性能:金刚石的导热系数及热扩散率高,切削热容易散出,刀具切削部分温度低。⑤具有较低的热膨胀系数:金刚石的热膨胀系数比硬质合金小几倍,由切削热引起的刀具尺寸的变化很小,这对尺寸精度要求很高的精密和超精密加工来说尤为重要。⑶金刚石刀具的应用。金刚石刀具多用于在高速下对有色金属及非金属材料进行精细切削及镗孔。适合加工各种耐磨非金属,如玻璃钢粉末冶金毛坯,陶瓷材料等;各种耐磨有色金属,如各种硅铝合金;各种有色金属光整加工。金刚石刀具的不足之处是热稳定性较差,切削温度超过700℃~800℃时,就会完全失去其硬度;此外,它不适于切削黑色金属,因为金刚石(碳)在高温下容易与铁原子作用,使碳原子转化为石墨结构,刀具极易损坏。2.立方氮化硼刀具材料的种类、性能和特点及刀具应用用与金刚石制造方法相似的方法合成的第二种超硬材料—立方氮化硼(CBN),在硬度和热导率方面仅次于金刚石,热稳定性极好,在大气中加热至10000C也不发生氧化。CBN对于黑色金属具有极为稳定的化学性能,可以广泛用于钢铁制品的加工。⑴立方氮化硼刀具的种类立方氮化硼(CBN)是自然界中不存在的物质,有单晶体和多晶体之分,即CBN单晶和聚晶立方氮化硼(Polycrystallinecubicbornnitride,简称PCBN)。CBN是氮化硼(BN)的同素异构体之一,结构与金刚石相似。PCBN(聚晶立方氮化硼)是在高温高压下将微细的CBN材料通过结合相(TiC、TiN、Al、Ti等)烧结在一起的多晶材料,是目前利用人工合成的硬度仅次于金刚石的刀具材料,它与金刚石统称为超硬刀具材料。PCBN主要用于制作刀具或其他工具。PCBN刀具可分为整体PCBN刀片和与硬质合金复合烧结的PCBN复合刀片。PCBN复合刀片是在强度和韧性较好的硬质合金上烧结一层O.5~1.0mm厚的PCBN而成的,其性能兼有较好的韧性和较高的硬度及耐磨性,它解决了CBN刀片抗弯强度低和焊接困难等问题。⑵立方氮化硼的主要性能、特点立方氮化硼的硬度虽略次于金刚石,但却远远高于其他高硬度材料。CBN的突出优点是热稳定性比金刚石高得多,可达1200℃以上(金刚石为700~800℃),另一个突出优点是化学惰性大,与铁元素在1200~1300℃下也不起化学反应。立方氮化硼的主要性能特点如下。①高的硬度和耐磨性:CBN晶体结构与金刚石相似,具有与金刚石相近的硬度和强度。PCBN特别适合于加工从前只能磨削的高硬度材料,能获得较好的工件表面质量。②具有很高的热稳定性:CBN的耐热性可达1400~1500℃,比金刚石的耐热性(700~800℃)几乎高l倍。PCBN刀具可用比硬质合金刀具高3~5倍的速度高速切削高温合金和淬硬钢。③优良的化学稳定性:与铁系材料到1200—1300℃时也不起化学作用,不会像金刚石那样急剧磨损,这时它仍能保持硬质合金的硬度;PCBN刀具适合于切削淬火钢零件和冷硬铸铁,可广泛应用于铸铁的高速切削。④具有较好的热导性:CBN的热导性虽然赶不上金刚石,但是在各类刀具材料中PCBN的热导性仅次于金刚石,大大高于高速钢和硬质合金⑤具有较低的摩擦系数:低的摩擦系数可导致切削时切削力减小,切削温度降低,加工表面质量提高。⑶立方氮化硼刀具应用:立方氮化硼适于用来精加工各种淬火钢、硬铸铁、高温合金、硬质合金、表面喷涂材料等难切削材料。加工精度可达IT5(孔为IT6),表面粗糙度值可小至Ra1.25~0.20μm。立方氮化硼刀具材料韧性和抗弯强度较差。因此,立方氮化硼车刀不宜用于低速、冲击载荷大的粗加工;同时不适合切削塑性大的材料(如铝合金、铜合金、镍基合金、塑性大的钢等),因为切削这些金属时会产生严重的积屑瘤,而使加工表面恶化。3.陶瓷刀具材料的种类、性能和特点及刀具应用陶瓷刀具具有硬度高、耐磨性能好、耐热性和化学稳定性优良等特点,且不易与金属产生粘接。陶瓷刀具在数控加工中占有十分重要的地位,陶瓷刀具已成为高速切削及难加工材料加工的主要刀具之一。陶瓷刀具广泛应用于高速切削、干切削、硬切削以及难加工材料的切削加工。陶瓷刀具可以高效加工传统刀具根本不能加工的高硬材料,实现“以车代磨”;陶瓷刀具的最佳切削速度可以比硬质合金刀具高2~lO倍,从而大大提高了切削加工生产效率;陶瓷刀具材料使用的主要原料是地壳中最丰富的元素,因此,陶瓷刀具的推广应用对提高生产率、降低加工成本、节省战略性贵重金属具有十分重要的意义,也将极大促进切削技术的进步。⑴陶瓷刀具材料的种类陶瓷刀具材料种类一般可分为氧化铝基陶瓷、氮化硅基陶瓷、复合氮化硅一氧化铝基陶瓷三大类。其中以氧化铝基和氮化硅基陶瓷刀具材料应用最为广泛。氮化硅基陶瓷的性能更优越于氧化铝基陶瓷。⑵陶瓷刀具的性能、特点陶瓷刀具的性能特点如下:①硬度高、耐磨性能好:陶瓷刀具的硬度虽然不及PCD和PCBN高,但大大高于硬质合金和高速钢刀具,达到93-95HRA。陶瓷刀具可以加工传统刀具难以加工的高硬材料,适合于高速切削和硬切削。②耐高温、耐热性好:陶瓷刀具在1200℃以上的高温下仍能进行切削。陶瓷刀具具有很好的高温力学性能,A12O3陶瓷刀具的抗氧化性能特别好,切削刃即使处于赤热状态,也能连续使用。因此,陶瓷刀具可以实现干切削,从而可省去切削液。③化学稳定性好:陶瓷刀具不易与金属产生粘接,且耐腐蚀、化学稳定性好,可减小刀具的粘接磨损。④摩擦系数低:陶瓷刀具与金属的亲合力小,摩擦系数低,可降低切削力和切削温度。⑶陶瓷刀具有应用陶瓷是主要用于高速精加工和半精加工的刀具材料之一。陶瓷刀具适用于切削加工各种铸铁(灰铸铁、球墨铸铁、可锻铸铁、冷硬铸铁、高合金耐磨铸铁)和钢材(碳素结构钢、合金结构钢、高强度钢、高锰钢、淬火钢等),也可用来切削铜合金、石墨、工程塑料和复合材料。陶瓷刀具材料性能上存在着抗弯强度低、冲击韧性差问题,不适于在低速、冲击负荷下切削。4.涂层刀具材料的性能和特点及刀具的应用对刀具进行涂层处理是提高刀具性能的重要途径之一。涂层刀具的出现,使刀具切削性能有了重大突破。涂层刀具是在韧性较好刀体上,涂覆一层或多层耐磨性好的难熔化合物,它将刀具基体与硬质涂层相结合,从而使刀具性能大大提高。涂层刀具可以提高加工效率、提高加工精度、延长刀具使用寿命、降低加工成本。新型数控机床所用切削刀具中有80%左右使用涂层刀具。涂层刀具将是今后数控加工领域中最重要的刀具品种。⑴涂层刀具的种类根据涂层方法不同,涂层刀具可分为化学气相沉积(CVD)涂层刀具和物理气相沉积(PVD)涂层刀具。涂层硬质合金刀具一般采用化学气相沉积法,沉积温度在1000℃左右。涂层高速钢刀具一般采用物理气相沉积法,沉积温度在500℃左右;根据涂层刀具基体材料的不同,涂层刀具可分为硬质合金涂层刀具、高速钢涂层刀具、以及在陶瓷和超硬材料(金刚石和立方氮化硼)上的涂层刀具等。根据涂层材料的性质,涂层刀具又可分为两大类,即“硬”涂层刀具和‘软”涂层刀具。“硬”涂层刀具追求的主要目标是高的硬度和耐磨性,其主要优点是硬度高、耐磨性能好,典型的是TiC和TiN涂层。“软”涂层刀具追求的目标是低摩擦系数,也称为自润滑刀具,它与工件材料的摩擦系数很低,只有0.1左右,可减小粘接,减轻摩擦,降低切削力和切削温度。最近开发了纳米涂层(Nanoeoating)刀具。这种涂层刀具可采用多种涂层材料的不同组合(如金属/金属、金属/陶瓷、陶瓷/陶瓷等),以满足不同的功能和性能要求。设计合理的纳米涂层可使刀具材料具有优异的减摩抗磨功能和自润滑性能,适合于高速干切削。⑵涂层刀具的特点涂层刀具的性能特点如下:①力学和切削性能好:涂层刀具将基体材料和涂层材料的优良性能结合起来,既保持了基体良好的韧性和较高的强度,又具有涂层的高硬度、高耐磨性和低摩擦系数。因此,涂层刀具的切削速度比未涂层刀具可提高2倍以上,并允许有较高的进给量。涂层刀具的寿命也得到提高。②通用性强:涂层刀具通用性广,加工范围显著扩大,一种涂层刀具可以代替数种非涂层刀具使用。③涂层厚度:随涂层厚度的增加刀具寿命也会增加,但当涂层厚度达到饱和,刀具寿命不再明显增加。涂层太厚时,易引起剥离;涂层太薄时,则耐磨性能差。④重磨性:涂层刀片重磨性差、涂层设备复杂、工艺要求高、涂层时间长。⑤涂层材料:不同涂层材料的刀具,切削性能不一样。如:低速切削时,TiC涂层占有优势;高速切削时,TiN较合适。⑶涂层刀具的应用涂层刀具在数控加工领域有巨大潜力,将是今后数控加工领域中最重要的刀具品种。涂层技术已应用于立铣刀、铰刀、钻头、复合孔加工刀具、齿轮滚刀、插齿刀、剃齿刀、成形拉刀及各种机夹可转位刀片,满足高速切削加工各种钢和铸铁、耐热合金和有色金属等材料的需要。5.硬质合金刀具材料的种类、性能和特点及应用硬质合金刀具,特别是可转位硬质合金刀具,是数控加工刀具的主导产品,20世纪80年代以来,各种整体式和可转位式硬质合金刀具或刀片的品种已经扩展到各种切削刀具领域,其中可转位硬质合金刀具由简单的车刀、面铣刀扩大到各种精密、复杂、成形刀具领域。⑴硬质合金刀具的种类按主要化学成分区分,硬质合金可分为碳化钨基硬质合金和碳(氮)化钛(TiC(N))基硬质合金。碳化钨基硬质合金包括钨钴类(YG)、钨钴钛类(YT)、添加稀有碳化物类(YW)三类,它们各有优缺点,主要成分为碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)、碳化铌(NbC)等,常用的金属粘接相是Co。碳(氮)化钛基硬质合金是以TiC为主要成分(有些加入了其他碳化物或氮化物)的硬质合金,常用的金属粘接相是Mo和Ni。ISO(国际标准化组织)将切削用硬质合金分为三类:K类,包括Kl0~K40,相当于我国的YG类(主要成分为WC.Co)。P类,包括P01~P50,相当于我国的YT类(主要成分为WC.TiC.Co)。M类,包括M10~M40,相当于我国的YW类(主要成分为WC-TiC-TaC(NbC)-Co)。各个牌号分别以01~50之间的数字表示从高硬度到最大韧性之间的一系列合金。⑵硬质合金刀具的性能特点硬质合金刀具的性能特点如下:①高硬度:硬质合金刀具是由硬度和熔点很高的碳化物(称硬质相)和金属粘结剂(称粘接相)经粉末冶金方法而制成的,其硬度达89~93HRA,远高于高速钢,在5400C时,硬度仍可达82~87HRA,与高速钢常温时硬度(83~86HRA)相同。硬质合金的硬度值随碳化物的性质、数量、粒度和金属粘接相的含量而变化,一般随粘接金属相含量的增多而降低。在粘接相含量相同时,YT类合金的硬度高于YG类合金,添加TaC(NbC)的合金具有较高的高温硬度。②抗弯强度和韧性:常用硬质合金的抗弯强度在900~1500MPa范围内。金属粘接相含量越高,则抗弯强度也就越高。当粘接剂含量相同时,YG类(WC-Co)合金的强度高于YT类(WC-TiC-Co)合金,并随着TiC含量的增加,强度降低。硬质合金是脆性材料,常温下其冲击韧度仅为高速钢的1/30~1/8。⑶常用硬质合金刀具的应用YG类合金主要用于加工铸铁、有色金属和非金属材料。细晶粒硬质合金(如YG3X、YG6X)在含钴量相同时比中晶粒的硬度和耐磨性要高些,适用于加工一些特殊的硬铸铁、奥氏体不锈钢、耐热合金、钛合金、硬青铜和耐磨的绝缘材料等。YT类硬质合金的突出优点是硬度高、耐热性好、高温时的硬度和抗压强度比YG类高、抗氧化性能好。因此,当要求刀具有较高的耐热性及耐磨性时,应选用TiC含量较高的牌号。YT类合金适合于加工塑性材料如钢材,但不宜加工钛合金、硅铝合金。YW类合金兼具YG、YT类合金的性能,综合性能好,它既可用于加工钢料,又可用于加工铸铁和有色金属。这类合金如适当增加钴含量,强度可很高,可用于各种难加工材料的粗加工和断续切削。6.高速钢刀具的种类和特点及应用高速钢(HighSpeedSteel,简称HSS)是一种加入了较多的W、Mo、Cr、V等合金元素的高合金工具钢。高速钢刀具在强度、韧性及工艺性等方面具有优良的综合性能,在复杂刀具,尤其是制造孔加工刀具、铣刀、螺纹刀具、拉刀、切齿刀具等一些刃形复杂刀具,高速钢仍占据主要地位。高速钢刀具易于磨出锋利的切削刃。按用途不同,高速钢可分为通用型高速钢和高性能高速钢。⑴通用型高速钢刀具通用型高速钢。一般可分钨钢、钨钼钢两类。这类高速钢含加(C)为0.7%~0.9%。按钢中含钨量的不同,可分为含W为12%或18%的钨钢,含W为6%或8%的钨钼系钢,含W为2%或不含W的钼钢。通用型高速钢具有一定的硬度(63-66HRC)和耐磨性、高的强度和韧性、良好的塑性和加工工艺性,因此广泛用于制造各种复杂刀具。①钨钢:通用型高速钢钨钢的典型牌号为W18Cr4V,(简称W18),具有较好的综合性能,在6000C时的高温硬度为48.5HRC,可用于制造各种复杂刀具。它有可磨削性好、脱碳敏感性小等优点,但由于碳化物含量较高,分布较不均匀,颗粒较大,强度和韧性不高。②钨钼钢:是指将钨钢中的一部分钨用钼代替所获得的一种高速钢。钨钼钢的典型牌号是W6Mo5Cr4V2,(简称M2)。M2的碳化物颗粒细小均匀,强度、韧性和高温塑性都比W18Cr4V好。另一种钨钼钢为W9Mo3Cr4V(简称W9),其热稳定性略高于M2钢,抗弯强度和韧性都比W6M05Cr4V2好,具有良好的可加工性能。⑵高性能高速钢刀具高性能高速钢是指在通用型高速钢成分中再增加一些含碳量、含钒量及添加Co、Al等合金元素的新钢种,从而可提高它的耐热性和耐磨性。主要有以下几大类:①高碳高速钢。高碳高速钢(如95W18Cr4V),常温和高温硬度较高,适于制造加工普通钢和铸铁、耐磨性要求较高的钻头、铰刀、丝锥和铣刀等或加工较硬材料的刀具,不宜承受大的冲击。②高钒高速钢。典型牌号,如,W12Cr4V4Mo,(简称EV4),含V提高到3%一5%,耐磨性好,适合切削对刀具磨损极大的材料,如纤维、硬橡胶、塑料等,也可用于加工不锈钢、高强度钢和高温合金等材料。③钴高速钢。属含钴超硬高速钢,典型牌号,如,W2Mo9Cr4VCo8,(简称M42),有很高的硬度,其硬度可达69-70HRC,适合于加工高强度耐热钢、高温合金、钛合金等难加工材料,M42可磨削性好,适于制作精密复杂刀具,但不宜在冲击切削条件下工作。④铝高速钢。属含铝超硬高速钢,典型牌号,如,W6Mo5Cr4V2Al,(简称501),6000C时的高温硬度也达到54HRC,切削性能相当于M42,适宜制造铣刀、钻头、铰刀、齿轮刀具、拉刀等,用于加工合金钢、不锈钢、高强度钢和高温合金等材料。⑤氮超硬高速钢。典型牌号,如,W12M03Cr4V3N,简称(V3N),属含氮超硬高速钢,硬度、强度、韧性与M42相当,可作为含钴高速钢的替代品,用于低速切削难加工材料和低速高精加工。⑶熔炼高速钢和粉末冶金高速钢按制造工艺不同,高速钢可分为熔炼高速钢和粉末冶金高速钢。①熔炼高速钢:普通高速钢和高性能高速钢都是用熔炼方法制造的。它们经过冶炼、铸锭和镀轧等工艺制成刀具。熔炼高速钢容易出现的严重问题是碳化物偏析,硬而脆的碳化物在高速钢中分布不均匀,且晶粒粗大(可达几十个微米),对高速钢刀具的耐磨性、韧性及切削性能产生不利影响。②粉末冶金高速钢(PMHSS):粉末冶金高速钢(PMHSS)是将高频感应炉熔炼出的钢液,用高压氩气或纯氮气使之雾化,再急冷而得到细小均匀的结晶组织(高速钢粉末),再将所得的粉末在高温、高压下压制成刀坯,或先制成钢坯再经过锻造、轧制成刀具形状。与熔融法制造的高速钢相比,PMHSS具有优点是:碳化物晶粒细小均匀,强度和韧性、耐磨性相对熔炼高速钢都提高不少。在复杂数控刀具领域PMHSS刀具将会进一步发展而占重要地位。典型牌号,如F15、FR71、GFl、GF2、GF3、PT1、PVN等,可用来制造大尺寸、承受重载、冲击性大的刀具,也可用来制造精密刀具。3.3.3数控刀具材料的选用原则目前广泛应用的数控刀具材料主要有金刚石刀具、立方氮化硼刀具、陶瓷刀具、涂层刀具、硬质合金刀具和高速钢刀具等。刀具材料总牌号多,其性能相差很大。如,表1-4-2-1各种刀具材料的主要性能指标。数控加工用刀具材料必须根据所加工的工件和加工性质来选择。刀具材料的选用应与加工对象合理匹配,切削刀具材料与加工对象的匹配,主要指二者的力学性能、物理性能和化学性能相匹配,以获得最长的刀具寿命和最大的切削加工生产率。表3-3-1各种刀具材料的主要性能指标种类密度/(g/cm)耐热性/℃硬度抗弯强度/MPa热导率/[W/(m.K)]热膨胀系数×10-6/0C聚晶金刚石3.47~3.56700~800>9000HV600~11002103.1聚晶立方氮化硼3.44~3.491300~15004500HV500~8001304.7陶瓷刀具3.1~5.O>12009l~95HRA700~150015.O~38.07.O~9.O硬质合金钨钴类14.O~15.580089~91.5HRA1000~235074.5~87.93~7.5钨钴钛类9.O~14.O90089~92.5HRA800~180020.9~62.8通用合金12.0~14.01000~1100~92.5HRATiC基合金5.O~7.O110092~93.5HRA1150~13508.2高速钢8.0~8.8600~70062~70HRC2000~450015.O~30.O8~121.切削刀具材料与加工对象的力学性能匹配切削刀具与加工对象的力学性能匹配问题主要是指刀具与工件材料的强度、韧性和硬度等力学性能参数要相匹配。具有不同力学性能的刀具材料所适合加工的工件材料有所不同。①刀具材料硬度顺序为:金刚石刀具>立方氮化硼刀具>陶瓷刀具>硬质合金>高速钢。②刀具材料的抗弯强度顺序为:高速钢>硬质合金>陶瓷刀具>金刚石和立方氮化硼刀具。③刀具材料的韧度大小顺序为:高速钢>硬质合金>立方氮化硼、金刚石和陶瓷刀具。高硬度的工件材料,必须用更高硬度的刀具来加工,刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。刀具材料的硬度越高,其耐磨性就越好。如,硬质合金中含钴量增多时,其强度和韧性增加,硬度降低,适合于粗加工;含钴量减少时,其硬度及耐磨性增加,适合于精加工。具有优良高温力学性能的刀具尤其适合于高速切削加工。陶瓷刀具优良的高温性能使其能够以高的速度进行切削,允许的切削速度可比硬质合金提高2~10倍。2.切削刀具材料与加工对象的物理性能匹配具有不同物理性能的刀具,如,高导热和低熔点的高速钢刀具、高熔点和低热胀的陶瓷刀具、高导热和低热胀的金刚石刀具等,所适合加工的工件材料有所不同。加工导热性差的工件时,应采用导热较好的刀具材料,以使切削热得以迅速传出而降低切削温度。金刚石由于导热系数及热扩散率高,切削热容易散出,不会产生很大的热变形,这对尺寸精度要求很高的精密加工刀具来说尤为重要。①各种刀具材料的耐热温度:金刚石刀具为700~8000C、PCBN刀具为13000~15000C、陶瓷刀具为1100~12000C、TiC(N)基硬质合金为900~11000C、WC基超细晶粒硬质合金为800~9000C、HSS为600~7000C。②各种刀具材料的导热系数顺序:PCD>PCBN>WC基硬质合金>TiC(N)基硬质合金>HSS>Si3N4基陶瓷>A1203基陶瓷。③各种刀具材料的热胀系数大小顺序为:HSS>WC基硬质合金>TiC(N)>A1203基陶瓷>PCBN>Si3N4基陶瓷>PCD。④各种刀具材料的抗热震性大小顺序为:HSS>WC基硬质合金>Si3N4基陶瓷>PCBN>PCD>TiC(N)基硬质合金>A1203基陶瓷。3.切削刀具材料与加工对象的化学性能匹配切削刀具材料与加工对象的化学性能匹配问题主要是指刀具材料与工件材料化学亲和性、化学反应、扩散和溶解等化学性能参数要相匹配。材料不同的刀具所适合加工的工件材料有所不同。①各种刀具材料抗粘接温度高低(与钢)为:PCBN>陶瓷>硬质合金>HSS。②各种刀具材料抗氧化温度高低为:陶瓷>PCBN>硬质合金>金刚石>HSS。③种刀具材料的扩散强度大小(对钢铁)为:金刚石>Si3N4基陶瓷>PCBN>A1203基陶瓷。扩散强度大小(对钛)为:A1203基陶瓷>PCBN>SiC>Si3N4>金刚石。4.数控刀具材料的合理选择一般而言,PCBN、陶瓷刀具、涂层硬质合金及TiCN基硬质合金刀具适合于钢铁等黑色金属的数控加工;而PCD刀具适合于对Al、Mg、Cu等有色金属材料及其合金和非金属材料的加工。表3-3-2列出了上述刀具材料所适合加工的一些工件材料。表3-3-2列出了各种刀具材料所适合加工的一些工件材料。表3-3-2刀具材料所适合加工的一些工件材料刀具高硬钢耐热合金钛合金镍基高温合金铸铁纯钢高硅铝合金FRP复材料PCD××◎×××◎◎PCBN◎◎○◎◎●●陶瓷刀具◎◎×◎◎●××涂层硬质合金○◎◎●◎◎●●TiCN基硬合金●×××◎●××注:符号含义是;◎一优,○一良,●一尚可,×一不合适。教案第9次课章节、名称第2章计算机数控系统(CNC)§2.5数控系统的刀具半径补偿原理教学目的和要求本次课主要讲授数控系统的刀具半径补偿原理的基本知识。使学生熟悉刀具半径补偿的概念及意义;掌握刀具半径补偿功能的原理和实现方法;掌握直线过渡型刀具半径补偿的的几种类型和各自的特点。掌握刀具半径补偿的概念及含义掌握直线切削刀具半径补偿的计算方法掌握圆弧切削刀具半径补偿的计算方法熟悉直线过渡型刀具半径补偿的三种类型重点难点重点:刀具半径补偿的原理及实现方法难点:直线、圆弧切削刀具半径补偿的计算方法教学进程(含课堂教学内容、教学方法、辅助手段、师生互动、时间分配)教学内容:1、刀具半径补偿的概念和意义。2、刀具半径补偿功能的实现直线切削刀具半径补偿的计算;圆弧切削刀具半径补偿的计算3、轮廓过渡时半径补偿的处理方法过渡圆弧法;尖角外轮廓过渡;尖角内轮廓过渡4、直线过渡型刀具半径补偿(C刀补)的三种类型及实现方法伸长型;缩短型;插入型教学方法:课堂讲授、多媒体PPT辅助手段:图片演示、板书推演师生互动:提问,讨论时间分配:总2学时作业布置P712-12主要参考资料《数控技术》,曹甜东主编,华中科技大学出版社,2021《数控车床(华中数控)考工实训教程》,吴明友主编,化学工业出版社,2007课后自我总结分析刀具半径补偿是数控加工中的一个非常重要的概念,对于刀具半径补偿功能的实现方法的熟练掌握对学生了解数控系统的工作原理及加工方式有着重要的意义,也是掌握数控机床编程和零件加工等实践环节的理论基础。在讲授过程中应注意收集和使用一些图像资源,让学生能够直观的了解刀补的具体内容及重要意义,对于具体的实现过程在黑板上进行推演以帮助学生掌握。讲稿第2章计算机数控系统(CNC)§2.5数控系统的刀具半径补偿原理一、刀具半径补偿的概念为了说明数控系统的刀具半径补偿,先来看一个铣削加工零件外轮廓的例子。如图2-37所示。在轮廓加工过程中,由于数控系统控制的是刀心轨迹,因此编程时要根据零件轮廓尺寸计算出刀心轨迹。零件轮廓可能需要粗铣、半精铣和精铣三个工步,由于每个工步加工余量不同,因此它们都有相应的刀心轨迹。另外刀具磨损后,也需要重新计算刀心轨迹。这样势必增加编程的复杂性。为了解决这个问题,在数控系统中专门设计了若干存储单元,存放各个工步的加工余量、刀具磨损量、刀具半径值,而刀心轨迹由系统自动进行计算,进而生成数控程序。这样简化了编程的计算,又增加了程序的可读性。这种以按照零件轮廓编制的程序和预先设定的偏置量为依据,自动生成刀具中心轨迹的功能称为刀具半径补偿功能。图2-37外轮廓铣削二、刀具半径补偿功能的实现YXYXOA(X,Y)O’A’(X’,Y’)αΔXΔY直线切削刀具半径补偿计算如图2-38所示,加工的直线终点坐标为A(X,Y)。假定程序加工完成后,刀具中心经刀具半径(R)补偿后到达直线O’A’的终点(X’,Y’)。设终点刀具半径偏置矢量AA’的坐标投影为(ΔX,ΔY),则有图2-38直线切削刀具半径补偿X’=X+ΔXY’=Y+ΔY因为ΔX=Rsinα=ΔY=-Rcosα=-故A’点的坐标值为X’=X+Y’=Y-第二、三、四象限的刀径补偿计算可以类似推导,所差仅为ΔX与ΔY的符号。2、圆弧切削刀具半径补偿的计算如图2-39所示,r为所加工圆弧的半径,圆弧起点A(X0,Y0),终点B(Xe,Ye)。假定上段程序加工完成后刀具中心点为A’(X0’,Y0’),那么BB’和AA’的长度为刀具的半径R。设BB’在坐标轴上的投影为(ΔX,ΔY),则YXOB’(X’eYXOB’(X’e,Y’e)A’(X0’,Y0’)ΔXΔYRB(Xe,Ye)A(X0,Y0)rYe’=Ye+ΔY从而得到ΔX=Rcosα=ΔY=Rsinα=故B’点的坐标为Xe’=Xe+Ye’=Ye-同样容易得到A’点的坐标,即X0’=X0+Y0’=Y0-通过上述公式已经能计算出直线和圆弧轮廓经过刀具半径补偿后的起点与终点坐标。但在两段轮廓交接处如何过渡就有问题了,除非两段轮廓交接处正好光滑过渡,即前一程序段终点的刀偏矢量与下一程序段起点的刀偏矢量完成重合,否则必然在交接处出现间断点或交叉点。一种简单的处理是在尖角过渡处使刀具中心轨迹以小于180o的圆弧由上段终点运动至下段始点。该过渡圆弧是由数控系统自动加入的,过渡圆弧的半径就是刀具半径R,如图2-37所示。由图可见,当尖角过渡为外轮廓过渡或光滑过渡时,这种方法是没有问题的。但当尖角轮廓为内轮廓时,很明显会出现工件的过切现象,这是不允许的。3、直线过渡型刀具半径补偿(C刀补)C刀补是数控系统为解决上述尖角过渡问题而设计的,它专门处理两个程序段间转角的各种情况。它由数控系统根据与实际轮廓完全一样的编程轨迹,直接算出刀具中心轨迹的转接交点,然后再对原来的程序轨迹(刀具中心)轨迹作伸长或缩短的修正。C刀补中,为了避免下一段加工轨迹对本段加工轨迹的影响,在计算本段的刀具中心轨迹时,提前将下一段程序读入。根据它们之间转换的具体情况,做出适当的处理。在CNC系统中,C刀补根据相邻两段程序段所走的线型不一样以及两个程序段轨迹的矢量夹角和刀具补偿方向的不同,将转接过渡方式分为三种类型:伸长型、缩短型、和插入型。对于直线与直线的转接,系统采用了以下算法。图2-42所示为直线至直线各种转接的情况,编程轨迹为OA->AF。图2-42直线至直线左刀补情况在图2-42(a)和(b)中,AB、AD为刀具半径值,刀具中心轨迹与DK的交点为C,由数控系统求出交点C的坐标值,实际刀具中心轨迹为IC->CK。采取求交点的方法,从根本上解决了肉轮廓加工的过切现象。由于IC->CK相对于OA->AF缩短了CB与DC的长度,因此,这种求交点的内轮廓过渡称为缩短型转换.在图2-42(c)中,C点为IB和DK延长线的交点,由数控系统求出交点C的坐标,实际刀具中心运动轨迹为IC->CK。同上道理,这种外轮廓过渡称为延长型转换。在图2-42(d)中,若仍然采用求IB与DK交点的方法,势必要过多地增加刀具的非切削空行程时间,这显然是不合理的。因此C刀补算法在这里采用插入型转换,即令BC=C’D=R,数控系统求出C与C’点的坐标,刀具中心运动轨迹为I->C->C’->K,即在原轨迹中间再插入CC’直线段,因此称其为插入型转换。湖南大学硕士学位论文配电网无功补偿系统的研究与应用姓名:黄志刚申请学位级别:硕士专业:电气工程指导教师:罗安;胡昭发20070830摘要本论文介绍了无功补偿的原理和目的,针对当Ii{『配电网无功补偿的情况,给出了无功补偿的优化方法。在实时补偿方面,针对不同的负荷状况,从实时的角度研究电容器组的投切及控制算法。针对当前低压无功补偿中遇到的一些问题,通过理论上的分析,结合先进的软硬件技术,详细介绍了解决思路和系统关键技术的实现以及补偿方案的选取。其中针对无触点开关投切电容器时产生的电流冲击问题设计了专门的主电路和触发电路,并结合通断率控制来消除冲击电流;对无功补偿中可能遇到的电流谐振问题,通过理论计算选取了在主电路中串入电感的方法来避免电流谐振的产生;对由投切电容可能引入的电压高次谐波,加入了电压滤波环节,减少对电网的污染;在三相不平衡情况比较严重的情况下,根据功率平衡器的原理进行无功补偿,把功率因数补偿到任意指定值的同时还将三相不对称负荷补偿成对于供电系统来说是三相对称的;对于单个的补偿装置,采用最优控制理论,使功率因数达到最优的控制效果;在进行多点协同的无功补偿时,先根据线路的特点计算寻求线路中的最优补偿点,在此基础上通过多个单机的协同控制,采用了动态规划方法,使线路的损耗达到最小值。该装置目前在韶关冶炼厂已投入运行,运行结果表明,该装置不仅响应速度快,数据传输可靠,控制精度高,而且操作简单,易维护,很好的满足了控制要求。关键字:无功补偿;无触点开关;谐波;最优补偿点IlABSTRACTInthispapertheprincipleandpurposeofreactivepowercompensationalepresented.Accordingtothecurrentsituationofreactivepowercompensationfromthedistributionsystem,reactivepoweroptimizationmethodisgiven.Inreal-timecompensation,fordifferentloadconditions,thecontrolofcapacitor’Sswitchingisresearchedintheviewofthereal—time.Bytheoryanalyzingandusingadvancedhardwareandsoftwaretechnology,thispaperdetailedlyintroducessolutionways,therealizationofsystem'skeytechnologyandtheVatcompensationschemeinordertosolvetheproblemofVarcompensationinlowvoltage.Tosolvethecurrentimpulseproblemwhenthenon—contactorswitchonorcutoffthecapacitance,weparticularlydesignthemaincircuitandthetriggercircuitandusetheopen-offratiocontrolwaystoeliminateimpulsecurrent.Inordertoshunthecurrentresonance,weuseseriesinductanceinmaincircuittoavoidtheharmoniccurrentbytheorycomputation.Weaddvoltageharmonicfiltertoreducetheharmwhichvoltageharmonicdotopowersystem.Intheseverepowersystemunbalancesituation,weusethepowerbalanceimplementprincipletodoVarcompensation.WeCanmakethepowerfactorreachgivenvalueandmakethethreephaseloadbecomebalanceinthesalnetime.Wemakethepowerfactorgetoptimumcontroleffectbyusingoptimumcontroltheorytoasinglecuntro|appliance.Tomulti—appliance,firstwegetthemostoptimumVarcompensationnodesinlines,theweuseDynamicProgrammingalgorithmtothecontrolwaysofleastenergyconsumebycooperatingtheappliance.Nowadays,thesystemhasbeenappliedinthefactory.Therunningstateindicatesthatthesystemnotonlyhashighcontrolprecision,highresponsespeedandreliabilityindatatransmitting,butalsoiseasytooperate,extendandmaintain.Thesystemsatisfieswiththerequiremengsofcontr01.Keyword:Vatcompensation;thenon_contractorswitch;harmonic;themostoptimumVarcompensation111湖南大学学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名:苕压硎j’日期:姊每?≈其|s日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留弗向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权湖南大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。本学位论文属于l、保密口,在年解密后适用本授权书。弋/不保密团。(请在以上相应方框内打“、/”)作者签名:删导师签名:l罗座日期:矽矽年纱月/,日日期:》固每|船其ls日I第一章绪论1.1课题背景由于电网容量的增加,对电网无功要求也与日增加。在城农网改造过程中,对无功就地平衡提出了新的要求,本论文针对低压配电网络如{可实现无功平衡,并实现自动补偿功能进行分析。1.2国内外研究现状电力系统是一个典型的非线性大系统,随着社会的进步,经济的发展,社会对电力的需求不断增加,使现代电力系统发展迅速,系统日趋复杂。大机组、重负荷、超高压远距离输电,大型互联网络的发展,以及对电力系统安全性、经济性及电能质量的高要求,使柔性输电系统(FACTS)技术成为目前电力系统的一个重要的研究领域。传统的无功补偿设备可满足一定范围内的无功补偿要求,但存在响应的速度慢,故障维护困难等缺点。静止无功补偿器(SVC)近年来获得了很大发展,已被广泛用于输电系统波阻抗补偿及长距离输电的分段补偿,也大量用于负载无功补偿。其典型代表是固定电容器+晶闸管控制电抗器(TCR)。晶闸管投切电容器也获得了广泛的应用…。除了在控制器件方面的改进,随着人工智能技术的不断发展,在控制方法上也有很大的进步。采用模糊神经网络、自适应控制等智能型控制方法,研制能同时对电压、无功功率、三相不平衡、谐波等进行综合调节和补偿控制的装置已经成为大家的共识。目静,在城市配电网公用变压器低压侧,由于用户家用电器感性负载的不断增加,使得其功率因数较低,导致公用变压器低压侧线路损耗大,供电电压指标不能满足用户要求。因此,在公用变压器低压侧进行无功功率补偿已成为目li{『研究的另一个热门。国外,城市、农村电网是否安装户外无功补偿已成为衡量配电网性能的主要指标之一。在日本,配电网系统户外补偿电容器的自动投切率已达86.4%;在荚国,许多城市道路旁的电线杆上装有并联电容器组,并采用自动装置控制”“”1。国内,无功补偿主要采用变电站集中补偿和企业就地补偿两种形式。据统计,当前,国内典型城乡配电网无功损耗情况如下:按电压等级划分,0.4k级损耗占50%,lOkV级占30%,35k'F以上占20%。在农村,长距离供电较为普遍,lOkV线路损耗较大;在城网中,配网损耗主要在0.4kV侧,因此,做好lOkV等级电压以下的无功补偿具有重要意义。近年来,由于计算机技术的发展,无功补偿技术已得到很大的改进,无功补偿装置的发展已进入一个新的阶段。然而,许多电网仍存在补偿不足,调节手段落后,电压偏低,损耗增大等问题。负荷无功补偿主要有以下几个问题:1)无功补偿容量不足。在供电方面,公用变压器在全国大中小城市中大量存在,而且伴随着一户一表等城网改造的开展,还会大量增加。由于资金匮乏及重视程度不够,公用变压器区内无功补偿容量严重不足,有功损耗大,公用变压器的利用率不商。在用户方面,由于公用变压器区内低压用户很多,供电企业管理不便,低压用户感性负荷很大。由于各用户没有统一的无功功率补偿,造成补偿不合理,效果不明显。2)无功补偿装置落后。在无功补偿装置上,大量的装置采用采集任选一相的无功信号或一相电流另两相电压得出的无功信号并以此作为投切容量的依据,但这种方式只适用于以三相动力为主的配电区,它可能会对非采样相造成过补或欠补。在投切容量的确定方面,往往功率因数为参考,电容器分组投切,当功率因数滞后时,则投入一组电容器;当有超前的无功分量时,则切除一组电容器;按步投切电容量,无功补偿的精度不高。这些装置常因为电容器容量级差大而投切精度低或频繁投切。3)集中补偿占大多数。集中补偿只能减少装设点以上线路和变压器因输送无功功率所产生的损耗,而不能减少用户内部通过配电线路向用电设备输送无功功率所造成的有功损耗。由于用户内部的无功损耗没有减少,所以降损节电效果必然受到限制。负荷所需的无功功率,仍然需要通过线路供给,依然产生有功损耗。户外型无功自动补偿系统的研究正在起步,已有一些科研单位和公司推出了相应产品。早期生产的低压网无功补偿控制器多选用分立的电子元件;80年代起发展为采用CMOS集成电路;近年来发展的新产品是以微处理器为核心的电脑型智能化产品,并根据用户需要开发出了一批多功能的新产品,可以获得优良的调节性能和某些独特的环节,使控制器更趋于完善。控制器电路.发计和生产过程的完善化,对电子元件的老化试验和筛选,提高了控制器整体的工作可靠性和使用寿命,产品质量的档次得到提高。目前主要存在问题是控制规律简单、抗干扰能力差,不能很好的解决无触点开关投切电容的问题,在三相不平衡条件下不能有效的进行无功补偿。同时由于户外工作环境相对恶劣,装置的可靠性和控制精度难以满足现场运行的要求。此外还不具备通讯功能,不能实现全电网的无功优化,不能对电能质量进行在线监视以满足现代化电力系统建设的需要。在公用变低压侧进行无功功率补偿,现在对并联电容器的分组方式得到了共识。过去生产按等容量分组的控制器,后生产按l:2:4或1:2:4:8不等容量分组的控制器,调控补偿设备的容量分组分别为7级和15级。主要发展带逻辑电路“先投先切,后投后切”的等容量分组方式的控制器,以使各组并联电容器投入运行的时间大致均等,并可减少增减补偿容量过程中电容器的投切次数,但仍旧没有解决无级投切的问题。随着高电压、大功率半导体器件的不断更新和发展,功率变换控制技术的闩臻完善,极大地推动了电力电子技术在电力工业中的广泛应用,对增强电力系统运行的稳定性和安全性,提高输电能力和用电效率,以及在节能和改善电能质量等各方面都起着越来越重要的作用。专家们认为在21世纪,会有更多更新的高电压大功率半导体器件和装置投入电力工业的实际运行中,使目前基本不可控的系统变为灵活可控(称为柔性交流输电系统——FACTS)。1.3目前国内主要补偿方案的简介及存在的问题国内无功补偿主要采用变电站集中补偿和企业就地补偿两种形式。从补偿方法上看,主要有固定、手动、自动三种“3。21.3.1固定补偿方案固定补偿主要综合整个电网的各项年平均参数,根据无功的分布情况选取若干个补偿点,每个点投入若干单位的电容量,使得全年节能效益与经济投入之比达到最佳。这种方法的优点是能综合考虑整个电网的运行特点,既取得了最佳经济效益又兼顾了全网无功潮流的平衡;缺点是补偿容量不能跟随电网的实时运行状况,其最佳值是年平均意义上的,电压波动问题依然存在,当电网负荷发生变化时,这种方法就无能为力了。1.3.2手动补偿方案手动补偿通过若干电容器组的组合,达到改变补偿容量的作用,适用于时间上呈一定规律变化的负荷,缺点是分组过于粗糙,设备体积庞大,需专人守护,并且只针对采样点参数进行计算,不能达到最佳补偿效果。1.3.3自动补偿方案自动补偿是微电子技术在电力系统的应用。控制器根据传感器的数据,计算出当前电网所需的无功补偿量并控制电容器组的投切,达到实时补偿的目的。1。进几年,由于电脑技术的应用,功率因数自动补偿系统的发展进入了一个新阶段。虽然各种微电脑功率因数自动控制器硬件、软件设计不同,但其原理基本如图卜1所示:囝l-I徽电脑功率因数自动控制器方榧图检测单元通过电压、电流互感器采得电压和电流信号,并利用运放电路、门电路得到反映相位差的方波信号,传给控制单元。微处理器接收到检测信号,经过逻辑运算得到实时COS毋,分别送到显示和比较单元。在比较单元中与设定值进行比较,确定是否发出投切命令。同时控制单元还具有过压、过流、欠补及振荡报警和保护功能。执行单元接到命令后,通过投切装置完成电容器组的投切。3微计算机技术的应用进一步加强了控制单元的功能,集成化程度大大提高了,自诊能力、扩充能力都得到了加强。1.3.4现有无功自动补偿器存在的问题从外部特性和各项指标及用户反映的情况来看,现有无功自动补偿器主要存在以下问题:1.没有解决无触点安全投切电容和无级调节投入电容容量的问题旧现有的采用无触点控制的无功补偿装置在电容的无级投切这一点上做的不很理想,大多采用控制触发角来控制投切电容量的多少。这样做会造成较大的冲击电流和引入高次谐波,使晶闸管的寿命变短,因而无触点控制的优势无法充分的体现出来。2.不能提供动态无功补偿的三相均荷控制无功补偿装置通常按三相平衡设计,但是电网中的许多冲击负荷往往具有三相不平衡性质,如冶会电弧炉、大型熔焊机、电气化铁路的电力机车等均为具有随机特征的三相不平衡负荷,民用照明负荷也肓显著的不平衡特征。显然,不论是瞬问的电压闪变还是持续的中点电位偏移,都不仅会干扰相关系统的证常工作而且可能危及人身与设备安全,这就要求帽应的动态无功补偿装置在快速补偿无功的同时,还具有均荷能力,可以实时地将三相不平衡负荷自动均衡为三相平衡负荷。3.易导致谐波放大“1在低压配电系统中,采用微机控制品闸管投切电容器组,实现基波无功的分相,分级和跟踪补偿。当配电系统非线性用电负荷比重较大时,并联电容器组的投入,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流大,使电容器过负荷,严重影响其使用寿命:另一方面,当电容器组的谐波容抗与系统等效谐波感抗相等而发生谐振时,引起电容器谐波电流严重放大,其结果是电容器因过热而损坏,系统电压严重畸变,影响其他用电设备的安全运行。4.现有的装置容易产生高次的谐波嘲传统上曾以交流接触器作为电力电容器投切控制执行元件,现已被晶闸管所取代,通4过对晶闸管触发控制角的控制,可以实现对补偿电容投切容量的动态连续调整,这就是所谓的静止无功功率补偿装置(svc)。FC+TCR(固定电容器+晶闸管控制电抗器)和TSC(晶闸管开关电容器)是SVC的两种典型结构。但是用触发控制角的控制容易产生高次谐波。5.抗干扰能力差,故障率高因为控制器的工作环境存在大电流、较强磁场等,对弱电设计部分的抗干扰能力要求很高。户外工作的环境更加恶劣,因此目前大多数控制器均只能在户内工作,并且故障率高,大大限制了补偿器的使用范围咖。6.不能达到全局最优目前的自动补偿方式均针对采样点数据进行计算,因为控制器之问缺乏信息交流,采用的算法落后,控制器不能综合全网运行情况使无功潮流的分布趋于最合理,经济效益达到最佳,同时也不能实现对电网的遥测,不适于现代化电网的发展趋势。5第二章无功补偿的原理及意义2.1无功补偿的原理在电力系统中,由于电感、电容元件的存在,不仅系统中存在着有功功率,而且存在无功功率。虽然无功功率本身不消耗能量,它的能量只是在电源及负载问进行传输交换,但是在这种能量交换的过程会引起电能的损耗,并使电网的视在功率增大,这将对系统产生以下一系列负面影响:(1)电网总电流增加,从而会使电力系统中的元件,如变压器、电器设备、导线等容量增大,使用户内部的起动控制设备、量测仪表等规格、尺寸增大,因而使初投资费用增大。在传送同样的用功功率情况下,总电流的增大,使设备及线路的损耗增加,使线路及变压器的电压损失增大。(2)电网的无功容量不足,会造成负荷端的供电电压低,影响正常生产和生活用电;反之,无功容量过剩,会造成电网的运行电压过高,电压波动率过大。(3)电网的功率因数低会造成大量电能损耗,当功率因数由0.8下降到0.6时,电能损耗将近提高了一倍。(4)对电力系统的发电设备柬说,无功电流的增大,对发电机转子的去磁效应增加,电压降低,如过度增加励磁电流,则使转子绕组超过允许温升。为了保证转子绕组币常工作,发电机就不允许达到预定的出力。此外,原动机的效率是按照有功功率衡量的,当发电机发出的视在功率一定时,无功功率的增加,会导致原动机效率的相对降低“…。目前,随着电力电子技术的迅速发展,工厂大量使用大功率丌关器件组成的设备对大型、冲击型负载供电,这使电能质量问题F1益严重。如果,不进行无功补偿,在正常运行时,会反复地使负载的无功功率在很大的范围内波动,这不仅使电气设备得不到充分的利用,网络传输能力下降,损耗增加,甚至还会导致设备损坏、系统瘫痪。2.1.1电力网的功率因数电力网除了要负担用电负荷的有功功率P,还要负担负荷的无功功率Q。有功功率P、无功功率Q和视在功率S之间存在下述关系:S=√P2+92(2-1)而专=COs≯(2-2)被定义为电力网的功率因数,其物理意义是线路的视在功率S供给有功功率的消耗所占百分数。在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用束供给有功功率,以减少无功功率的消耗。62.1.2补偿无功功率的电路和向量图a1电路b)向量图(欠补偿)c1向量图(过补偿)国2—1补偿无功功率的电路和向量图在工业和生活用电负载中,阻感负载占有很大的比例:异步电动机、变压器、萤光灯等都是典型的阻感负载。异步电动机和变压器所消耗的无功功率在电力系统所提供的无功功率中占有很高的比重。电力系统的电抗器和架空线等也要消耗一些无功功率;同时,各种谐波源也要消耗一定的无功功率。阻感负载可看作电阻R与电感L串联的电路,其功率因数为c0。D:.!!√R2+X:(2.1)式中X£=观给R、L电路并联接入C之后,电路如图2.1a所示。该电路的电流方程为i=ic+iu(2-4)由图2.1b的相量图可知,并联电容后电压D与j的相位变4,T,即供电回路的功率因数提高了。此时供电电流j的相位滞后于电压D,这种情况称为欠补偿““。7k若电容c的容量过大,使供电电流,的相位超前于电压口.这种情况称为过补偿,其相量图如图2.1c所示。通常不希望出现过补偿的情况,因为这会引起变压器二次电压的升高,而且容性无功功率同样会增加电能损耗。如果供电线路电压因此而升高,还会增大电容器本身的功率损耗,使温升增大,影响电容器的寿命。2.3提高功率因数的意义1)提高功率因数可以减少电压损失电力网的电压损失可以表示为:AU:—PR+—Qx(2.6)U可看出,影响△【,的因数四个:线路的有功功率P、无功功率Q、电阻R和电抗x。如果采用容抗为%的电容来补偿,则电压损失为:AU:—PR+Q(—x-xc)(2.7)U故采用补偿电容提高功率因数后,电压损失△U减小,改善了电压质量。2)减少线路损失当线路通过电流,时,其有功损耗为:AP=312R×10—3(枷1(2-8)或AP=3麦≥枷弋M∽”可见,线路有功
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年湖南省长沙市长郡名校联考高考数学一模试卷(含解析)
- 全面解析2024年广告设计师试题及答案
- 宠物医护考试题库及答案
- 采购主管面试题目及答案
- 宝安美术面试题目及答案
- 厨师基础知识试题及答案
- 助理广告师考试全线支持试题及答案
- 大模型时代的可观测技术探索与实践
- 2024年中国高校人才服务洞察报告
- 口腔招聘笔试试题及答案
- 工业园区消防安全管理制度
- 2024年福建省公务员录用考试《行测》真题及答案解析
- 慢阻肺康复治疗病例汇报
- 氢氧化钠购销
- 医疗器械供应商合作管理制度
- 2024年中级电工考前必刷必练题库500题(含真题、必会题)
- DB11-T 1832.7-2022 建筑工程施工工艺规程 第7部分:建筑地面工程
- 湖北省武汉市腾云联盟2023-2024学年高二下学期5月联考化学试卷
- 2024年《武器装备科研生产单位保密资格标准》内容考试试题库及答案
- 变革管理方案计划
- 异地就医登记备案表
评论
0/150
提交评论