版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省台州市第四协作区数学九上期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,下列说法正确的是()A.点O是△ABC的内切圆的圆心B.CE⊥ABC.△ABC的内切圆经过D,E两点D.AO=CO2.在Rt△ABC中,∠C=90°,如果,那么的值是()A. B. C. D.33.从﹣1,0,1,2,3这五个数中,任意选一个数记为m,能使关于x的不等式组有解,并且使一元二次方程(m﹣1)x2+2mx+m+2=0有实数根的数m的个数为()A.1个 B.2个 C.3个 D.4个4.二次函数图象上部分点的坐标对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=05.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形
②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2
④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.46.如图,将图形用放大镜放大,这种图形的变化属于()A.平移 B.相似 C.旋转 D.对称7.若关于x的方程kx2﹣2x﹣1=0有实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣18.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+29.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根10.二次函数的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下 B.抛物线与轴有两个交点C.抛物线的对称轴是直线=1 D.抛物线经过点(2,3)二、填空题(每小题3分,共24分)11.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.12.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE折叠后得到△A′BE,延长BA′交CD于点F,则DF的长为______.13.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.14.若抛物线的开口向上,则的取值范围是________.15.函数y=﹣(x﹣1)2+1(x≥3)的最大值是_____.16.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.17.如图,在半径为5的中,弦,,垂足为点,则的长为__________.18.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____.三、解答题(共66分)19.(10分)综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,,,.你能求出的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将绕点逆时针旋转,得到,连接,求出的度数.思路二:将绕点顺时针旋转,得到,连接,求出的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点是正方形外一点,,,,求的度数.拓展应用(3)如图3,在边长为的等边三角形内有一点,,,则的面积是______.20.(6分)如图,直线与轴交于点,与反比例函数第一象限内的图象交于点,连接,若.(1)求直线的表达式和反比例函数的表达式;(2)若直线与轴的交点为,求的面积.21.(6分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.22.(8分)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).(1)画出关于点O成中心对称的,并写出点B1的坐标;(2)求出以点B1为顶点,并经过点B的二次函数关系式.23.(8分)已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.24.(8分)已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.25.(10分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.26.(10分)如图,已知AD•AC=AB•AE.求证:△ADE∽△ABC.
参考答案一、选择题(每小题3分,共30分)1、A【分析】由∠BAC的平分线AD与∠ACB的平分线CE交于点O,得出点O是△ABC的内心即可.【题目详解】解:∵△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,∴点O是△ABC的内切圆的圆心;故选:A.【题目点拨】本题主要考察三角形的内切圆与内心,解题关键是熟练掌握三角形的内切圆性质.2、A【解题分析】一个角的正弦值等于它的余角的余弦值.【题目详解】∵Rt△ABC中,∠C=90°,sinA=,∴cosA===,∴∠A+∠B=90°,∴sinB=cosA=.故选A.【题目点拨】本题主要考查锐角三角函数的定义,根据sinA得出cosA的值是解题的关键.3、B【分析】根据一元一次不等式组可求出m的范围,根据判别式即可求出答案.【题目详解】解:∵∴2﹣2m≤x≤2+m,由题意可知:2﹣2m≤2+m,∴m≥0,∵由于一元二次方程(m﹣1)x2+2mx+m+2=0有实数根,∴△=4m2﹣4(m﹣1)(m+2)=8﹣4m≥0,∴m≤2,∵m﹣1≠0,∴m≠1,∴m的取值范围为:0≤m≤2且m≠1,∴m=0或2故选:B.【题目点拨】本题考查不等式组的解法以及一元二次方程,解题的关键是熟练运用根的判别式.4、B【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【题目详解】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣1.故选B.【题目点拨】本题考查二次函数的图象.5、C【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【题目详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【题目点拨】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.6、B【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【题目详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【题目点拨】本题考查相似形的识别,联系图形根据相似图形的定义得出是解题的关键.7、C【分析】根据根的判别式()即可求出答案.【题目详解】由题意可知:∴∵∴且,故选:C.【题目点拨】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k的取值范围.8、D【解题分析】试题分析:一元二次方程的一般式为:a+bx+c=0(a、b、c为常数,且a≠0),根据定义可得:A选项中a有可能为0,B选项中含有分式,C选项中经过化简后不含二次项,D为一元二次方程.考点:一元二次方程的定义9、D【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【题目详解】∵△=62-4×(-1)×(-10)=36-40=-4<0,
∴方程没有实数根.
故选D.【题目点拨】此题考查一元二次方程的根的判别式,解题关键在于掌握方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、B【题目详解】A、a=2,则抛物线y=2x2-3的开口向上,所以A选项错误;B、当y=0时,2x2-3=0,此方程有两个不相等的实数解,即抛物线与x轴有两个交点,所以B选项正确;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当x=2时,y=2×4-3=5,则抛物线不经过点(2,3),所以D选项错误,故选B.二、填空题(每小题3分,共24分)11、【解题分析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【题目详解】解:
红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.
故答案为:.【题目点拨】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.12、【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EA',然后利用“HL”证明△EDF和△EA'F全等,根据全等三角形对应边相等可证得DF=A'F;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列方程即可得解.【题目详解】∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△A'BE,∴AE=EA',AB=BA',∴ED=EA',∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EA'F=90°,∵在Rt△EDF和Rt△EA'F中,∵,∴Rt△EDF≌Rt△EA'F(HL),∴DF=FA',设DF=x,则BF=4+x,CF=4﹣x,在Rt△BCF中,62+(4﹣x)2=(4+x)2,解得:x=.故答案为:.【题目点拨】本题主要考查折叠的性质与勾股定理,利用勾股定理列出方程,是解题的关键.13、-1<x<3【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【题目详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【题目点拨】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.14、a>2【分析】利用二次函数图像的性质直接求解.【题目详解】解:∵抛物线的开口向上,∴a-2>0,∴a>2,故答案为a>2.【题目点拨】本题考查二次函数图像的性质,掌握二次项系数决定开口方向是本题的解题关键.15、-1【分析】根据函数图象自变量取值范围得出对应y的值,即是函数的最值.【题目详解】解:∵函数y=-(x-1)2+1,∴对称轴为直线x=1,当x>1时,y随x的增大而减小,∵当x=1时,y=-1,∴函数y=-(x-1)2+1(x≥1)的最大值是-1.故答案为-1.【题目点拨】此题考查的是求二次函数的最值,掌握二次函数对称轴两侧的增减性是解决此题的关键.16、3﹣【分析】根据图形可以求得BF的长,然后根据图形即可求得S1﹣S2的值.【题目详解】解:∵在矩形ABCD中,AB=2,BC=,F是AB中点,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案为:3﹣.【题目点拨】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键.17、4【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【题目详解】连接OA,∵AB⊥OP,∴AP=AB=×6=3,∠APO=90°,又OA=5,∴OP===4,故答案为:4.【题目点拨】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.18、2.【解题分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【题目详解】∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣2),∴当y=0时,0=(x﹣3)(x﹣2),解得:x2=3,x2=2.∵3﹣2=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.故答案为:2.【题目点拨】本题考查了抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共66分)19、(1)∠APB=135°,(2)∠APB=45°;(3).【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;
思路二、同思路一的方法即可得出结论;(2)将绕点逆时针旋转,得到,连接,然后同(1)的思路一的方法即可得出结论;(3)可先将△APB绕点A按逆时针方向旋转60°,得到△AP'C,根据旋转性质,角的计算可得到△APP'是等边三角形,再根据勾股定理,得到AP的长,最后根据三角形面积得到所求.【题目详解】解:(1)思路一,如图1,将绕点逆时针旋转,得到,连接,则≌,,,,∴,根据勾股定理得,,∵,∴.又∵,∴,∴是直角三角形,且,∴;思路二、同思路一的方法.(2)如图2,将绕点逆时针旋转,得到,连接,则≌,,,,∴,根据勾股定理得,.∵,∴.又∵,∴,∴是直角三角形,且,∴;(3)如图3,将△APB绕点A按逆时针方向旋转60°,得到△AP'C,
∴∠AP'C=∠APB=360°-90°-120°=150°.∵AP=AP',∴△APP'是等边三角形,∴PP'=AP,∠AP'P=∠APP'=60°,∴∠PP'C=90°,∠P'PC=30°,∴,即.∵APC=90°,∴AP2+PC2=AC2,且,∴PC=2,∴,∴.【题目点拨】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,旋转的性质,全等三角形的性质,勾股定理及其逆定理,正确作出辅助线是解本题的关键.20、(1),;(1)1【分析】(1)先由S△AOB=4,求得点B的坐标是(1,4),把点B(1,4)代入反比例函数的解析式为,可得反比例函数的解析式为:;再把A(-1,0)、B(1,4)代入直线AB的解析式为y=ax+b可得直线AB的解析式为y=x+1.(1)把x=0代入直线AB的解析式y=x+1得y=1,即OC=1,可得S△OCB=OC×1=×1×1=1.【题目详解】解:(1)由A(-1,0),得OA=1;∵点B(1,m)在第一象限内,S△AOB=4,∴OA•m=4;∴m=4;∴点B的坐标是(1,4);设该反比例函数的解析式为(k≠0),将点B的坐标代入,得,∴k=8;∴反比例函数的解析式为:;设直线AB的解析式为y=ax+b(k≠0),将点A,B的坐标分别代入,得,解得:;∴直线的表达式是;(1)在y=x+1中,令x=0,得y=1.∴点C的坐标是(0,1),∴OC=1;∴S△OCB=OC×1=×1×1=1.【题目点拨】本题考查反比例函数和一次函数解析式的确定、图形的面积求法等知识及综合应用知识、解决问题的能力.此题有点难度.21、(1)详见解析;(2).【题目详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:.考点:列表法与树状图法.22、(1)图见解析,点;(2).【分析】(1)先由条件求出A点的坐标,再根据中心对称的性质求出、的坐标,最后顺次连接、,△OAB关于点O成中心对称的△就画好了,可求出B1点坐标.(2)根据(1)的结论设出抛物线的顶点式,利用待定系数法就可以直接求出其抛物线的解析式.【题目详解】(1)如图,点.(2)设二次函数的关系式是,
把(4,2)代入上式得,,即二次函数关系式是.【题目点拨】本题主要考查中心对称的性质,及用待定系数法求二次函数的解析式,难度不大.23、见解析证明.【解题分析】试题分析:连结OC,根据平行线的性质得到∠1=∠B,∠2=∠3,而∠B=∠3,所以∠1=∠2,则根据圆心角、弧、弦的关系即可得到结论.试题解析:连结OC,如图,∵OD∥BC,∴∠1=∠B,∠2=∠3,又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.考点:圆心角、弧、弦的关系.24、(1)60°,5;(2)AM=BM+CM【分析】(1)由旋转性质可得△ABM≌△CAN,根据全等三角形的性质和等边三角形的判定可得△AMN是等边三角形,继而求出∠AMN=60°,根据∠BMC=120°,∠AMN=∠AMC=60°,继而求出∠AMB;AM=MN=MC+CN.(2)【题目详解】解∵把△ABM绕着点A按逆时针方向旋转60到△ACN的位置,所以∠NAM=60°,因为AN=AM,所以△AMN是等边三角形,所以∠AMN=60°,因为∠BMC=120°,∠AMN=∠AMC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物标志物在药物代谢动力学研究中的作用
- 生物制剂失应答的炎症性肠病个体化治疗方案制定-1
- 生活质量追踪指导下的放疗方案优化策略
- 生活质量终点在慢性病药物生命周期管理中的作用
- 深度解析(2026)《GBT 20032-2024项目风险管理 应用指南》
- 深度解析(2026)《GBT 19524.1-2004肥料中粪大肠菌群的测定》
- 注册电气工程师面试题库及答案详解
- 生活方式干预对高血压肾病进展的影响
- 瓣叶撕裂修复的术中应急处理方案
- 软件开发人员面试题含答案
- 购买乐器合同范本
- 山东名校考试联盟2025年12月高三年级阶段性检测地理试卷(含答案)
- 2026年农产品营销技巧培训课件
- 2025年甘肃省水务投资集团有限公司招聘企业管理人员考试笔试备考试题及答案解析
- 2025年医疗器械研发与生产基地项目可行性研究报告及总结分析
- 2025至2030中国槟榔行业深度分析及发展趋势与行业调研及市场前景预测评估报告
- 习作:那次经历真难忘 课件 2025-2026学年统编版语文三年级上册
- 2025年云南税务局比选择优副科级干部选拔面试题及答案
- 水产养殖业知识培训课件
- 雨课堂学堂云在线《科学道德与学术规范(江苏师大 )》单元测试考核答案
- 2型糖尿病基层治疗指南实践版
评论
0/150
提交评论