2024届上海市崇明县名校数学九年级第一学期期末检测模拟试题含解析_第1页
2024届上海市崇明县名校数学九年级第一学期期末检测模拟试题含解析_第2页
2024届上海市崇明县名校数学九年级第一学期期末检测模拟试题含解析_第3页
2024届上海市崇明县名校数学九年级第一学期期末检测模拟试题含解析_第4页
2024届上海市崇明县名校数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市崇明县名校数学九年级第一学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将二次函数y=2x2-4x+4的图象向左平移2个单位,再向下平移1个单位后所得图象的函数解析式为()A.y=2(x+1)2+1 B.y=2(x+1)2+3 C.y=2(x-3)2+1 D.y=-2(x-3)2+32.下列关系式中,属于二次函数的是(x是自变量)A.y=x2 B.y= C.y= D.y=ax2+bx+c3.如图,在矩形ABCD中,AB=4,AD=3,若以A为圆心,4为半径作⊙A.下列四个点中,在⊙A外的是()A.点A B.点B C.点C D.点D4.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推断m的值为()A.﹣2 B.0 C. D.25.如图,在△ABC中,∠C=,∠B=,以点A为圆心,适当长为半径画弧,分别交AB,AC于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于P,作射线AP交BC于点D,下列说法不正确的是()

A.∠ADC= B.AD=BD C. D.CD=BD6.在中,,,则的值为()A. B. C. D.7.如图所示,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC平行于x轴,△ABC的面积为S,则()A.S=1 B.S=2 C.1<S<2 D.S>28.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()A. B. C. D.9.若气象部门预报明天下雨的概率是,下列说法正确的是()A.明天一定会下雨 B.明天一定不会下雨C.明天下雨的可能性较大 D.明天下雨的可能性较小10.如图,在中,,,则的值是()A. B.1 C. D.11.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>-1 D.-1<m<012.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5B.﹣1C.4D.18二、填空题(每题4分,共24分)13.如图,直线∥轴,分别交反比例函数和图象于、两点,若S△AOB=2,则的值为_______.14.把多项式分解因式的结果是.15.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.16.在中,,为的中点,则的长为__________.17.如图,,如果,,,那么___________.18.如果将抛物线向上平移,使它经过点,那么所得新抛物线的表达式是_______________.三、解答题(共78分)19.(8分)某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与每天销售量y(件)之间的关系如下表.x(元/件)15182022…y(件)250220200180…(1)直接写出:y与x之间的函数关系;(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w(元)与销售单价x(元/件)之间的函数关系;(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?20.(8分)已知x2﹣8x+16﹣m2=0(m≠0)是关于x的一元二次方程(1)证明:此方程总有两个不相等的实数根;(2)若等腰△ABC的一边长a=6,另两边长b、c是该方程的两个实数根,求△ABC的面积.21.(8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(10分)如图,在△ABC中,BC=12,tanA=,∠B=30°,求AC的长和△ABC的面积.23.(10分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.24.(10分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.25.(12分)如图,∠1=∠3,∠B=∠D,AB=DE=5,BC=1.(1)请证明△ABC∽△ADE.(2)求AD的长.26.如图,AB为⊙O的直径,弦AC的长为8cm.(1)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧于点E;(保留作图痕迹,不要求写作法);(2)若DE的长为8cm,求直径AB的长.

参考答案一、选择题(每题4分,共48分)1、A【分析】先配方成顶点式,再根据二次函数图象的平移规律“上加下减,左加右减”解答即可.【题目详解】由“上加下减,左加右减”的原则可知,将二次函数y=2x2-4x+4配方成的图象向左平移2个单位,再向下平移1个单位,得以新的抛物线的表达式是y=2(x+1)2+1,故选:A.【题目点拨】本题主要考查的是函数图象的平移,由y=ax2平移得到y=a(x-h)2+k,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式即可.2、A【题目详解】A.y=x2,是二次函数,正确;B.y=,被开方数含自变量,不是二次函数,错误;C.y=,分母中含自变量,不是二次函数,错误;D.y=ax2+bx+c,a=0时,,不是二次函数,错误.故选A.考点:二次函数的定义.3、C【解题分析】连接AC,利用勾股定理求出AC的长度,即可解题.【题目详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【题目点拨】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.4、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【题目详解】解:观察表格发现该二次函数的图象经过点(,﹣)和(,﹣),所以对称轴为x==1,∵,∴点(﹣,m)和(,)关于对称轴对称,∴m=,故选:C.【题目点拨】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.5、C【分析】由题意可知平分,求出,,利用直角三角形角的性质以及等腰三角形的判定和性质一一判断即可.【题目详解】解:在中,,,,由作图可知:平分,,故A正确,故B正确,,,,,故C错误,设,则,,故D正确,故选:C.【题目点拨】本题考查作图复杂作图,角平分线的性质,线段的垂直平分线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、D【分析】在Rt△ABC中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【题目详解】解:在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选:D.【题目点拨】本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等.7、B【分析】设点A(m,),则根据对称的性质和垂直的特点,可以表示出B、C的坐标,根据坐标关系得出BC、AC的长,从而得出△ABC的面积.【题目详解】设点A(m,)∵A、B关于原点对称∴B(-m,)∴C(m,)∴AC=,BC=2m∴=2故选:B【题目点拨】本题考查反比例函数和关于原点对称点的求解,解题关键是表示出A、B、C的坐标,从而得出△ABC的面积.8、A【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【题目详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A.【题目点拨】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.9、C【分析】根据概率的意义找到正确选项即可.【题目详解】解:气象部门预报明天下雨的概率是,说明明天下雨的可能性比较大,所以只有C合题意.故选:C.【题目点拨】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.10、A【分析】利用相似三角形的性质:相似三角形的面积比等于相似比的平方得到,即可解决问题.【题目详解】∵,∴,∴,∴,故选:A.【题目点拨】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.11、B【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【题目详解】顶点坐标(m,m+1)在第一象限,则有解得:m>0,故选B.考点:二次函数的性质.12、A【解题分析】∵抛物线y=﹣x2+bx+c经过点(﹣2,3),∴-4-2b+c=3,即c-2b=7,∴2c-4b-9=2(c-2b)-9=14-9=5.故选A.二、填空题(每题4分,共24分)13、1【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd-ab=1,即可得出答案.【题目详解】设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=2,∴,∴cd-ab=1,∴k2-k1=1,故答案为:1.【题目点拨】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出cd-ab=1是解此题的关键.14、m(4m+n)(4m﹣n).【解题分析】试题分析:原式==m(4m+n)(4m﹣n).故答案为m(4m+n)(4m﹣n).考点:提公因式法与公式法的综合运用.15、(0,3).【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【题目详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【题目点拨】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.16、5【分析】先根据勾股定理的逆定理判定△ABC是直角三角形,再根据斜中定理计算即可得出答案.【题目详解】∵∴∴△ABC为直角三角形,AB为斜边又为的中点∴故答案为5.【题目点拨】本题考查的是勾股定理的逆定理以及直角三角形的斜中定理,解题关键是根据已知条件判断出三角形是直角三角形.17、1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.【题目详解】解:∵l1∥l2∥l3,

∴,即,

∴DE=1.故答案为:1【题目点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.18、【解题分析】试题解析:设平移后的抛物线解析式为y=x2+2x-1+b,把A(0,1)代入,得1=-1+b,解得b=4,则该函数解析式为y=x2+2x+1.考点:二次函数图象与几何变换.三、解答题(共78分)19、(1)y=﹣10x+1;(2)w=﹣10x2+500x﹣10;(3)销售单价定为25元时,每天销售利润最大,最大销售利润2250元.【分析】(1)根据题意得出日销售量y是销售价x的一次函数,再利用待定系数法求出即可;(2)根据销量×每件利润=总利润,即可得出所获利润W为二次函数;(3)将(2)中的二次函数化为顶点式,确定最值即可.【题目详解】(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则,解得:.故y与x之间的函数关系式为:y=﹣10x+1.故答案为:y=﹣10x+1.(2)w与x的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+1)=﹣10x2+500x﹣10;(3)w=﹣10x2+500x﹣10=﹣10(x﹣25)2+2250,因为﹣10<0,所以当x=25时,w有最大值.w最大值为2250,答:销售单价定为25元时,每天销售利润最大,最大销售利润2250元.【题目点拨】本题考查了二次函数的应用及二次函数最大值求法,难度适中,解答本题的关键是根据题意,逐步求解,由易到难,搞清楚这两个函数之间的联系.20、(1)证明见解析;(2)△ABC的面积为.【分析】(1)计算判别式的值得到△=4m2,从而得到△>0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x=4±m,即b=4+m,c=4﹣m,讨论:当b=a=6时,即4+m=6,解得m=2,利用勾股定理计算出底边上的高,然后计算△ABC的面积;当c=a时,即4﹣m=6,解得m=﹣2,即a=c=6,b=2,利用同样方法计算△ABC的面积.【题目详解】(1)证明:△=(﹣8)2﹣4×(16﹣m2)=4m2,∵m≠0,∴m2>0,∴△>0,∴此方程总有两个不相等的实数根;(2)解:∵∴,即b=4+m,c=4﹣m,∵m≠0∴b≠c当b=a时,4+m=6,解得m=2,即a=b=6,c=2,如图,AB=AC=6,BC=2,AD为高,则BD=CD=1,∴∴△ABC的面积为:×2×=;当c=a时,4﹣m=6,解得m=﹣2,即a=c=6,b=2,如图,AB=AC=6,BC=2,AD为高,则BD=CD=1,∴∴△ABC的面积为:×2×=,即△ABC的面积为.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:①当△>0,方程有两个不相等的实数根;②当△=0,方程有两个相等的实数根;③当△<0,方程没有实数根.也考查了三角形三边的关系.21、【解题分析】本题先利用树状图,求出医院某天出生了3个婴儿的8中等可能性,再求出出现1个男婴、2个女婴有三种,概率为.【题目详解】解:用树状图来表示出生婴儿的情况,如图所示.在这8种情况中,一男两女的情况有3种,则概率为.【题目点拨】本题利用树状图比较合适,利用列表不太方便.一般来说求等可能性,只有两个层次,既可以用树状图,又可以用列表;有三个层次时,适宜用树状图求出所有的等可能性.用到的知识点为:概率=所求情况数与总情况数之比.22、10,24+18【分析】作CD⊥AB于D,根据直角三角形的性质求出CD,根据余弦的定义求出BD,根据正切的定义求出AD,根据勾股定理求出AC,根据三角形的面积公式求出△ABC的面积.【题目详解】解:作CD⊥AB于D,在Rt△CDB中,∠B=30°,∴CD=BC=6,BD=BC•cosB=12×=,在Rt△ACD中,tanA=,∴,即,解得,AD=8,由勾股定理得,AC=,△ABC的面积=×AB×CD=×(8+6)×6=24+18.【题目点拨】本题考查的是解直角三角形,掌握锐角三角函数的定义、勾股定理是解题的关键.23、(1)证明见解析;(2)BC=1;【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【题目详解】(1)连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∵OC=OB,∴∠C=∠CBO,∴∠C+∠OBA=90°,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)∵⊙O的半径为,∴OB=,AC=2,∵OP∥BC,∴∠C=∠CBO=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=1.【题目点拨】本题考查了切线的判定与性质、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.24、(1)D(﹣2,3);(2)二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.【题目详解】试题分析:(1)由抛物线的对称性来求点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论