2024届北京市燕山地区数学九上期末统考试题含解析_第1页
2024届北京市燕山地区数学九上期末统考试题含解析_第2页
2024届北京市燕山地区数学九上期末统考试题含解析_第3页
2024届北京市燕山地区数学九上期末统考试题含解析_第4页
2024届北京市燕山地区数学九上期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市燕山地区数学九上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知是关于的一元二次方程的解,则等于()A.1 B.-2 C.-1 D.22.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.3.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.14.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m= C.m= D.m=105.已知点P(1,-3)在反比例函数的图象上,则的值是A.3 B.-3 C. D.6.已知Rt△ABC,∠ACB=90º,BC=10,AC=20,点D为斜边中点,连接CD,将△BCD沿CD翻折得△B’CD,B’D交AC于点E,则的值为()A. B. C. D.7.下列航空公司的标志中,是轴对称图形的是()A. B. C. D.8.某次聚会,每两个参加聚会的人都互相握了一次手,有人统计一共握了10次手.求这次聚会的人数是多少?设这次聚会共有人,可列出的方程为()A. B. C. D.9.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为()A. B. C. D.10.若一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,则反比例函数y=的图象所在的象限是()A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限二、填空题(每小题3分,共24分)11.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___确定一个圆.(填“能”或“不能”)12.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为______.13.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.14.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为_____.15.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.16.如图,内接于,于点,,若的半径,则的长为______.17.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出△A1B1C1与△ABC相似,两三角形位于点B同侧且相似比是3,则点C的对应顶点C1的坐标是_____.18.函数和在第一象限内的图象如图,点是的图象上一动点,轴于点,交的图象于点;轴于点,交的图象于点,则四边形的面积为______.三、解答题(共66分)19.(10分)已知:如图,在半径为的中,、是两条直径,为的中点,的延长线交于点,且,连接。.(1)求证:;(2)求的长.20.(6分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;21.(6分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研其性质——运用函数解决问题”的学习过程.如图,在平面直角坐标系中己经绘制了一条直线.另一函数与的函数关系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直线的解析式;(2)请根据列表中的数据,绘制出函数的近似图像;(3)请根据所学知识并结合上述信息拟合出函数的解折式,并求出与的交点坐标.22.(8分)如图,在四边形ABCD中,AD∥BC,AB⊥BD于点B.已知∠A=45°,∠C=60°,,求AD的长.23.(8分)如图,在平面直角坐标系中,的三个顶点的坐标分别为点、、.(1)的外接圆圆心的坐标为.(2)①以点为位似中心,在网格区域内画出,使得与位似,且点与点对应,位似比为2:1,②点坐标为.(3)的面积为个平方单位.24.(8分)如图,抛物线过点,交x轴于A,B两点点A在点B的左侧.求抛物线的解析式,并写出顶点M的坐标;连接OC,CM,求的值;若点P在抛物线的对称轴上,连接BP,CP,BM,当时,求点P的坐标.25.(10分)如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(n,3(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣6x>0时x(3)若M是x轴上一点,且△MOB和△AOB的面积相等,求M点坐标.26.(10分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】方程的解就是能使方程的左右两边相等的未知数的值,因而把x=-1代入方程就得到一个关于m+n的方程,就可以求出m+n的值.【题目详解】将x=1代入方程式得1+m+n=0,

解得m+n=-1.

故选:C.【题目点拨】此题考查一元二次方程的解,解题关键在于把求未知系数的问题转化为解方程的问题.2、D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【题目详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【题目点拨】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.3、C【题目详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4、B【解题分析】试题分析:∵AB∥CD,∴△OCD∽△OEB,又∵E是AB的中点,∴2EB=AB=CD,∴,即,解得m=.故选B.考点:1.相似三角形的判定与性质;2.平行四边形的性质.5、B【解题分析】根据点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=-1.故选B.6、A【分析】如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,由勾股定理可求AB的长,由锐角三角函数可求BH,CH,DH的长,由折叠的性质可得∠BDC=∠B'DC,S△BCD=S△DCB'=50,利用锐角三角函数可求EF=,由面积关系可求解.【题目详解】解:如图,过点B作BH⊥CD于H,过点E作EF⊥CD于F,∵∠ACB=90°,BC=10,AC=20,∴AB=,S△ABC=×10×20=100,∵点D为斜边中点,∠ACB=90°,∴AD=CD=BD=,∴∠DAC=∠DCA,∠DBC=∠DCB,∴sin∠BCD=sin∠DBC=,∴,∴BH=,∴CH=,∴DH=,∵将△BCD沿CD翻折得△B′CD,∴∠BDC=∠B'DC,S△BCD=S△DCB'=50,∴tan∠BDC=tan∠B'DC=,∴,∴设DF=3x,EF=4x,∵tan∠DCA=tan∠DAC=,∴,∴FC=8x,∵DF+CF=CD,∴3x+8x=,∴x=,∴EF=,∴S△DEC=×DC×EF=,∴S△CEB'=50-=,∴,故选:A.【题目点拨】本题考查了翻折变换,直角三角形的性质,锐角三角函数的性质,勾股定理等知识,添加恰当辅助线是本题的关键.7、C【分析】根据轴对称图形的概念判断即可.【题目详解】解:、不是轴对称图形,不合题意;、不是轴对称图形,不合题意;、是轴对称图形,符合题意;、不是轴对称图形,不合题意;故选:.【题目点拨】本题考查的是轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、D【分析】每个人都要和他自己以外的人握手一次,但两个人之间只握手一次,所以等量关系为×聚会人数×(聚会人数-1)=总握手次数,把相关数值代入即可.【题目详解】解:设参加这次聚会的同学共有x人,由题意得:,故选:D.【题目点拨】此题主要考查了一元二次方程的应用,正确理解题意,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.9、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案.【题目详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6,所以两次摸出的小球恰好是一个红球和一个绿球的概率==.故选A.【题目点拨】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.10、B【分析】首先根据一元二次方程根的判别式确定m的取值范围,进而可得m+2的取值范围,然后再根据反比例函数的性质可得答案.【题目详解】∵一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,∴△=b2﹣4ac=16+16m>0,∴m>﹣1,∴m+2>1,∴反比例函数y=的图象所在的象限是第一、三象限,故选:B.【题目点拨】本题主要考查了反比例函数的性质以及一元二次方程根的判别式,关键是正确确定m的取值范围.二、填空题(每小题3分,共24分)11、不能【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【题目详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【题目点拨】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.12、【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【题目详解】解:根据题意,得:.故答案为:.【题目点拨】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为:.13、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【题目详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【题目点拨】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.14、2(1+x)+2(1+x)2=1.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果该校这两年购买的实验器材的投资年平均增长率为x,根据题意可得出的方程.【题目详解】设该校这两年购买的实验器材的投资年平均增长率为x,今年的投资金额为:2(1+x),明年的投资金额为:2(1+x)2,所以根据题意可得出的方程:2(1+x)+2(1+x)2=1.故答案为:2(1+x)+2(1+x)2=1.【题目点拨】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.15、50(1﹣x)2=1.【解题分析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.16、【分析】连接OC,先证出△ADB为等腰直角三角形,从而得出∠ABD=45°,然后根据同弧所对的圆周角是圆心角的一半即可求出∠AOC,然后根据勾股定理即可求出AC.【题目详解】解:连接OC∵,,∴△ADB为等腰直角三角形∴∠ABD=45°∴∠AOC=2∠ABD=90°∵的半径∴OC=OA=2在Rt△OAC中,AC=故答案为:.【题目点拨】此题考查的是等腰直角三角形的判定及性质、圆周角定理和勾股定理,掌握等腰直角三角形的判定及性质、同弧所对的圆周角是圆心角的一半和利用勾股定理解直角三角形是解决此题的关键.17、(0,-3)【解题分析】根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形在改变的过程中保持形状不变(大小可变)即可得出答案.【题目详解】把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,所画图形如图所示,C1坐标为(0,-3).【题目点拨】本题考查了相似变换作图的知识,注意图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数.18、3【解题分析】根据反比例函数系数k的几何意义可分别求得△OBD、△OAC、矩形PDOC的面积,据此可求出四边形PAOB的面积.【题目详解】解:如图,

∵A、B是反比函数上的点,

∴S△OBD=S△OAC=,∵P是反比例函数上的点,

∴S矩形PDOC=4,

∴S四边形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【题目点拨】本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.三、解答题(共66分)19、(1)证明见解析;(1)EM=4.【解题分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(1)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度.【题目详解】(1)连接AC、EB.∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(1)∵DC是⊙O的直径,∴∠DEC=90°,∴DE1+EC1=DC1.∵DE,CD=8,且EC为正数,∴EC=2.∵M为OB的中点,∴BM=1,AM=3.∵AM•BM=EM•CM=EM•(EC﹣EM)=EM•(2﹣EM)=11,且EM>MC,∴EM=4.【题目点拨】本题考查了相似三角形的判定和性质、圆周角定理、勾股定理的知识点,解答本题的关键是根据已知条件和图形作辅助线.20、(1)y=(x-1)2-1或y=x2-2x-3;(2)y=-(x-1)2+1【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【题目详解】(1)根据题意,二次函数图像的顶点坐标为(1,-1),设二次函数的表达式为y=a(x-1)2-1把(0,-3)代入y=a(x-1)2-1得,a=1∴y=(x-1)2-1或y=x2-2x-3(2)解:∵y=y=(x-1)2-1,

∴原函数图象的顶点坐标为(1,-1),

∵描出的抛物线与抛物线y=x2-2x-3关于x轴对称,

∴新抛物线顶点坐标为(1,1),

∴这条抛物线的解析式为y=-(x-1)2+1,故答案为:y=-(x-1)2+1.【题目点拨】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.21、(1);(2)见解析;(3)交点为和【分析】(1)根据待定系数法即可求出直线的解析式;(2)描点连线即可;(3)根据图象得出函数为二次函数,顶点坐标为(-2,2),用待定系数法即可求出抛物线的解析式,解方程组即可得出与交点坐标.【题目详解】(1)设直线的解析式为y=kx+m.由图象可知,直线过点(6,0),(0,-3),∴,解得:,∴;(2)图象如图:(3)由图象可知:函数为抛物线,顶点为.设其解析式为:从表中选一点代入得:1=4a+2,解出:,∴,即.联立两个解析式:,解得:或,∴交点为和.【题目点拨】本题考查了二次函数的图象和性质.根据图象求出一次函数和二次函数的解析式是解答本题的关键.22、.【分析】过点D作DE⊥BC于E,在Rt△CDE中,∠C=60°,,则可求出DE,由已知可推出∠DBE=∠ADB=45°,根据直解三角形的边角关系依次求出BD,AD即可.【题目详解】过点D作DE⊥BC于E∵在Rt△CDE中,∠C=60°,,∴,∵AB⊥BD,∠A=45°,∴∠ADB=45°.∵AD∥BC,∴∠DBE=∠ADB=45°∴在Rt△DBE中,∠DEB=90°,,∴,又∵在Rt△ABD中,∠ABD=90°,∠A=45°,∴.【题目点拨】本题考查了解直角三角形的知识,正确作出辅助线是解题的关键.23、(1);(2)①见解析;②;(3)4【分析】(1)由于三角形的外心是三边垂直平分线的交点,故只要利用网格特点作出AB与AC的垂直平分线,其交点即为圆心M;(2)根据位似图形的性质画图即可;由位似图形的性质即可求得点D坐标;(3)利用(2)题的图形,根据三角形的面积公式求解即可.【题目详解】解:(1)如图1,点M是AB与AC的垂直平分线的交点,即为△ABC的外接圆圆心,其坐标是(2,2);故答案为:(2,2);(2)①如图2所示;②点坐标为(4,6);故答案为:(4,6);(3)的面积=个平方单位.故答案为:4.【题目点拨】本题考查了三角形外心的性质、坐标系中位似图形的作图和三角形的面积等知识,属于常考题型,熟练掌握基本知识是解题关键.24、抛物线的解析式为,顶点M的坐标为;;P点坐标为或【解题分析】根据待定系数法,可得函数解析式;根据顶点式解析式,可得顶点坐标;根据勾股定理及逆定理,可得,根据正切函数,可得答案;根据相似三角形的判定与性质,可得PM的值,可得M点坐标.【题目详解】由抛物线过点,得,解得,抛物线的解析式为,顶点M的坐标为;如图1,连接OM,,,,,,,,;如图2,过C作对称轴,垂足N在对称轴上,取一点E,使,连接CE,.当时,,解得的,,,.,,,,∽,,易知,,,解得,P点坐标为或【题目点拨】本题考查了二次函数综合题,利用待定系数法求函数解析式,勾股定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论