版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届拉萨市重点中学九年级数学第一学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F别是AM、MC的中点,则EF的长随着M点的运动()A.不变 B.变长 C.变短 D.先变短再变长2.某次数学纠错比赛共有道题目,每道题都答对得分,答错或不答得分,全班名同学参加了此次竞赛,他们的得分情况如下表所示:成绩(分)人数则全班名同学的成绩的中位数和众数分别是()A., B., C.,70 D.,3.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.54.如图,在Rt△ABC中,∠BAC=90º,AH是高,AM是中线,那么在结论①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中错误的个数有()A.0个 B.1个 C.2个 D.3个5.已知抛物线y=x2-8x+c的顶点在x轴上,则c的值是()A.16 B.-4 C.4 D.86.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x-2x+d=0有实数根,则点P()A.在⊙O的内部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O内部7.下列事件中,不可能事件的是()A.投掷一枚均匀的硬币10次,正面朝上的次数为5次B.任意一个五边形的外角和等于C.从装满白球的袋子里摸出红球D.大年初一会下雨8.如果一个一元二次方程的根是x1=x2=1,那么这个方程是A.(x+1)2=0B.(x-1)2=0C.x2=1D.x2+1=09.若,则的值为()A. B. C. D.10.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.11.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A. B. C. D.12.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x,则可以列方程为()A. B.C. D.二、填空题(每题4分,共24分)13.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.14.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.15.如图,菱形的顶点在轴正半轴上,顶点的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,则点的对应点的坐标为________.16.已知3a=4b≠0,那么=_____.17.路灯(P点)距地面高9米,身高1.5的小艺站在距路灯的底部(O点)20米的A点,则此时小艺在路灯下的影子长是__________米.18.已知tan(α+15°)=,则锐角α的度数为______°.三、解答题(共78分)19.(8分)如图,抛物线的图象过点.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得?若存在,请求出点M的坐标;若不存在,请说明理由.20.(8分)如图,双曲线与直线相交于点(点在第一象限),其横坐标为2.(1)求的值;(2)若两个图像在第三象限的交点为,则点的坐标为;(3)点为此反比例函数图像上一点,其纵坐标为3,过点作,交轴于点,直接写出线段的长.21.(8分)下面是一位同学做的一道作图题:已知线段、、(如图所示),求作线段,使.他的作法如下:1.以下为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作,交于点.所以:线段______就是所求的线段.(1)试将结论补完整:线段______就是所求的线段.(2)这位同学作图的依据是______;(3)如果,,,试用向量表示向量.22.(10分)如图,中,,以为直径作半圆交与点,点为的中点,连结.(1)求证:是半圆的切线;(2)若,,求的长.23.(10分)在直角坐标平面内,某二次函数图象的顶点为,且经过点.(1)求该二次函数的解析式;(2)求直线y=-x-1与该二次函数图象的交点坐标.24.(10分)如图1,抛物线y=﹣x2+bx+c的对称轴为直线x=﹣,与x轴交于点A和点B(1,0),与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)求抛物线的解析式;(2)点P是直线BE上方抛物线上一动点,连接PD、PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以A、M、N、K为顶点的四边形是正方形时,请求出点N的坐标.25.(12分)如图,的顶点坐标分别为,,.(1)画出关于点的中心对称图形;(2)画出绕点逆时针旋转的;直接写出点的坐标为_____;(3)求在旋转到的过程中,点所经过的路径长.26.如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】由题意得EF为三角形AMC的中位线,由中位线的性质可得:EF的长恒等于定值AC的一半.【题目详解】解:∵E,F分别是AM,MC的中点,
∴,
∵A、C是定点,
∴AC的的长恒为定长,
∴无论M运动到哪个位置EF的长不变,
故选A.【题目点拨】此题考查的是三角形中位线的性质,即三角形的中位线平行且等于第三边的一半.2、A【分析】根据中位数的定义把这组数据从小到大排列,求出最中间2个数的平均数;根据众数的定义找出出现次数最多的数即可.【题目详解】把这组数据从小到大排列,最中间2个数的平均数是(70+80)÷2=75;
则中位数是75;
70出现了13次,出现的次数最多,则众数是70;
故选:A.【题目点拨】本题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数,注意众数不止一个.3、B【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【题目详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【题目点拨】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.4、B【分析】根据直角三角形斜边上的中线性质和等腰三角形的性质得出∠B=∠BAM,根据已知条件判断∠B=∠MAH不一定成立;根据三角形的内角和定理及余角的性质得出∠B=∠CAH.【题目详解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中线,∴AM=BM,∴∠B=∠BAM,①正确;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②错误;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正确.故选:B.【题目点拨】本题主要考查对直角三角形斜边上的中线性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质进行推理是解此题的关键.5、A【分析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.【题目详解】∵二次函数y=-8x+c的顶点的横坐标为x=-
=
-=4,∵顶点在x轴上,
∴顶点的坐标是(4,0),
把(4,0)代入y=-8x+c中,得:16-32+c=0,解得:c=16,故答案为A【题目点拨】本题考查求抛物线顶点纵坐标的公式,比较简单.6、D【分析】先根据条件x
2
-2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【题目详解】解:∵关于x的方程x
2
-2x+d=0有实根,∴根的判别式△=(-2)
2
-4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【题目点拨】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.7、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】解:A、投掷一枚硬币10次,有5次正面朝上是随机事件;
B、任意一个五边形的外角和是360°是确定事件;
C、从装满白球的袋子里摸出红球是不可能事件;
D、大年初一会下雨是随机事件,
故选:C.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【分析】分别求出四个选项中每一个方程的根,即可判断求解.【题目详解】A、(x+1)2=0的根是:x1=x2=-1,不符合题意;B、(x-1)2=0的根是:x1=x2=-1,符合题意;C、x2=1的根是:x1=1,x2=-1,不符合题意;D、x2+1=0没有实数根,不符合题意;故选B.9、A【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【题目详解】由,得4b=a−b.,解得a=5b,故选:A.【题目点拨】本题考查了比例的性质,利用比例的性质得出b表示a是解题关键.10、B【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【题目详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.【题目点拨】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.11、D【解题分析】首先利用直径所对的圆周角为90°得到△ABD是直角三角形,然后利用勾股定理求得AD边的长,然后求得∠B的正弦即可求得答案.【题目详解】∵AB是直径,∴∠ADB=90°,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B=∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选D.【题目点拨】本题考查了圆周角定理及解直角三角形的知识,解题的关键是能够得到直角三角形并利用锐角三角函数求得一个锐角的正弦值,难度不大.12、D【分析】根据题意分别用含x式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案.【题目详解】解:设增长率为x,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2,根据题意可列方程为.故选:D.【题目点拨】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.二、填空题(每题4分,共24分)13、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【题目详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【题目点拨】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【题目详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.,,方程有两个不相等的实数根,,.故答案为:.【题目点拨】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15、【分析】先求得点C的坐标,再根据如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或进行解答.【题目详解】菱形的顶点的坐标为,;过点作,如图,,,在和中,,∴,,,∴点C的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,,则点的对应点的坐标为.故答案为:.【题目点拨】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.16、.【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【题目详解】解:两边都除以3b,得=,故答案为:.【题目点拨】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.17、2【分析】此题利用三角形相似证明即可,即图中路灯与影长组成的三角形和小艺与自身影长组成的三角形相似,再根据对应边成比计算即可.【题目详解】如图:∵PO⊥OB,AC⊥AB,∴∠O=∠CAB,∴△POB△CAB,∴,由题意知:PO=9,CA=1.5,OA=20,∴,解得:AB=2,即小艺在路灯下的影子长是2米,故答案为:2.【题目点拨】此题考查根据相似三角形测影长的相关知识,利用相似三角形的相关性质即可.18、15【分析】直接利用特殊角的三角函数值求出答案.【题目详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.三、解答题(共78分)19、(1);(2)存在,点,周长为:;(3)存在,点M坐标为【分析】(1)由于条件给出抛物线与x轴的交点,故可设交点式,把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线对称,故有,则,所以当C、P、B在同一直线上时,最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把代入即求得点P纵坐标.(3)由可得,当两三角形以PA为底时,高相等,即点C和点M到直线PA距离相等.又因为M在x轴上方,故有.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.【题目详解】解:(1)∵抛物线与x轴交于点∴可设交点式把点代入得:∴抛物线解析式为(2)在抛物线的对称轴上存在一点P,使得的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线上,点A、B关于对称轴对称∵当C、P、B在同一直线上时,最小最小设直线BC解析式为把点B代入得:,解得:∴直线BC:∴点使的周长最小,最小值为.(3)存在满足条件的点M,使得.∵∴当以PA为底时,两三角形等高∴点C和点M到直线PA距离相等∵M在x轴上方,设直线AP解析式为解得:∴直线∴直线CM解析式为:解得:(即点C),∴点M坐标为【题目点拨】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.20、(1)k=12;(2);(3)3【分析】(1)将横坐标为2代入y=3x解出纵坐标,再将坐标点代入反比例函数求出k即可.(2)根据反比例函数的图象性质即可写出.(3)先算出B的坐标,再算出BC的表达式即可算出C的坐标点,则OC即可得出.【题目详解】(1)把代入中,得把代入中,得,.(2)∵A(2,6)∴根据反比例函数的图象M.(3)将y=3代入,解得x=4,则B(4,3),∵BC∥OA,∴设BC:y=3x+b,将B(4,3)代入解得:b=-9,BC:y=3x-9.令y=0,则3x-9=0,x=3,∴C(3,0)即OC=3.【题目点拨】本题考查反比例函数与一次函数的图象性质,关键在于熟悉基础知识.21、(1)CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)【分析】(1)根据作图依据平行线分线段成比例定理求解可得;
(2)根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;
(3)先证△OAC∽△OBD得,即,从而知,又,与反向可得出结果.【题目详解】解:(1)根据作图知,线段CD就是所求的线段x,
故答案为:CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例).(3),∴△OAC∽△OBD,.,,.得.,,与反向,.【题目点拨】本题主要考查作图-复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算.22、(1)见解析;(2)1.【分析】(1)连接OD,OE,BD,证△OBE≌△ODE(SSS),得∠ODE=∠ABC=90°;(2)证△DEC为等边三角形,得DC=DE=2.【题目详解】(1)证明:连接OD,OE,BD,
∵AB为圆O的直径,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E为斜边BC的中点,
∴DE=BE,
在△OBE和△ODE中,
,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
则DE为圆O的切线;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=10°,DE=CE,
∴△DEC为等边三角形,即DC=DE=2,
则AD=AC-DC=1.【题目点拨】考核知识点:切线的判定和性质.23、(1);(2)两个函数图象的交点坐标是和.【分析】(1)根据题意可设该二次函数的解析式为,把点代入函数解析式,求出a值,进而得出该二次函数的解析式;(2)由题意直线y=-x-1与该二次函数图象有交点得,进行求解进而分析即可.【题目详解】解:(1)依题意可设该二次函数的解析式为,把代入函数解析式,得,解得,故该二次函数的解析式是.(2)据题意,得,得,.当时,可得;当时,可得.故两个函数图象的交点坐标是和.【题目点拨】本题考查待定系数法求二次函数解析式,解题的关键是设出二次函数的顶点式,求出函数解析式.24、(1)y=﹣x2+﹣x+2;(2);(3)N点的坐标为:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根据对称轴公式列出等式,带点到抛物线列出等式,解出即可;(2)先求出A、B、C的坐标,从而求出D的坐标算出BD的解析式,根据题意画出图形,设出P、G的坐标代入三角形的面积公式得出一元二次方程,联立方程组解出即可;(3)分类讨论①当AM是正方形的边时,(ⅰ)当点M在y轴左侧时(N在下方),(ⅱ)当点M在y轴右侧时,②当AM是正方形的对角线时,分别求出结果综合即可.【题目详解】(1)抛物线y=﹣x2+bx+c的对称轴为直线x=﹣,与x轴交于点B(1,0).∴,解得,∴抛物线的解析式为:y=﹣x2+﹣x+2;(2)抛物线y=﹣x2﹣x+2与x轴交于点A和点B,与y轴交于点C,∴A(﹣1,0),B(1,0),C(0,2).∵点D为线段AC的中点,∴D(﹣2,1),∴直线BD的解析式为:,过点P作y轴的平行线交直线EF于点G,如图1,设点P(x,),则点G(x,).∴,当x=﹣时,S最大,即点P(﹣,),过点E作x轴的平行线交PG于点H,则tan∠EBA=tan∠HEG=,∴,故为最小值,即点G为所求.联立解得,(舍去),故点E(﹣,),则PG﹣的最小值为PH=.(3)①当AM是正方形的边时,(ⅰ)当点M在y轴左侧时(N在下方),如图2,当点M在第二象限时,过点A作y轴的平行线GH,过点M作MG⊥GH于点G,过点N作HN⊥GH于点H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=1﹣,AH=GM,即y=﹣,解得x=,当x=时,GM=x﹣(﹣1)=,yN=﹣AH=﹣GM=,∴N(,).当x=时,同理可得N(,),当点M在第三象限时,同理可得N(,).(ⅱ)当点M在y轴右侧时,如图3,点M在第一象限时,过点M作MH⊥x轴于点H设AH=b,同理△AHM≌△MGN(AAS),则点M(﹣1+b,b﹣).将点M的坐标代入抛物线解析式可得:b=(负值舍去)yN=yM+GM=yM+AH=,∴N(﹣,).当点M在第四象限时,同理可得N(﹣,-).②当AM是正方形的对角线时,当点M在y轴左侧时,过点M作MG⊥对称轴于点G,设对称轴与x轴交于点H,如图1.∵∠AHN=∠MGN=90°,∠NAH=∠MNG,MN=AN,∴△AHN≌△NGN(AAS),设点N(﹣,π),则点M(﹣,),将点M的坐标代入抛物线解析式可得,(舍去),∴N(,),当点M在y轴右侧时,同理可得N(,).综上所述:N点的坐标为:或()或(﹣)或(﹣)或(﹣)或或(﹣).【题目点拨】本题考查二次函数与一次函数的综合题型,关键在于熟练掌握设数法,合理利用相似全等等基础知识.25、(1)见解析;(2)见解析;;(3).【分析】(1)由中心对称的定义和性质作图变换后的对应点,再顺次连接即可得;
(2)由旋转变换的定义和性质作图变换后的对应点,再顺次连接即可得;
(3)利用弧长公式计算可得.【题目详解】(1)如图所示,即为所求.(2)如图所示,即为所求,其中点的坐标为,故答案为:.(3)∵,,∴点所经过的路径长为.【题目点拨】本题考查了作图-旋转变换:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广州东华职业学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年怀化师范高等专科学校马克思主义基本原理概论期末考试笔试题库
- 2025年山东药品食品职业学院马克思主义基本原理概论期末考试真题汇编
- 2025年重庆三峡职业学院马克思主义基本原理概论期末考试真题汇编
- 2025年浙江树人学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年鄂尔多斯应用技术学院马克思主义基本原理概论期末考试参考题库
- 2025年中级监控类消防设施实操考核题库含答案
- 交直流电机在自动控制系统中的节能和经济效益比较探析
- 保健品销售代理协议
- 房产中介管理系统采购方案
- (正式版)DB32∕T 5179-2025 《智能建筑工程检测与施工质量验收规程》
- 辉绿岩粉的用途
- 2025-2030房地产行业人才结构转型与复合型培养体系构建
- 道路车辆汽车列车多车辆间连接装置强度要求
- 乐高大班汇报课
- 2026年度安全生产工作计划
- 社区教育师资管理办法
- 自动驾驶汽车在自动驾驶电动游艇领域的应用前景研究报告
- 电缆销售员知识培训内容课件
- 西南空管面试题目及答案
- 医疗器械销售年终汇报
评论
0/150
提交评论