版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
佛山市重点中学2024届数学九年级第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.2.如图所示,抛物线的顶点为,与轴的交点在点和之间,以下结论:①;②;③;④.其中正确的是()A.①② B.③④ C.②③ D.①③3.下列方程中不是一元二次方程的是()A. B. C. D.4.如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是()A. B. C. D.5.如图,在线段AB上有一点C,在AB的同侧作等腰△ACD和等腰△ECB,且AC=AD,EC=EB,∠DAC=∠CEB,直线BD与线段AE,线段CE分别交于点F,G.对于下列结论:①△DCG∽△BEG;②△ACE∽△DCB;③GF·GB=GC·GE;④若∠DAC=∠CEB=90°,则2AD2=DF·DG.其中正确的是()A.①②③④ B.①②③ C.①③④ D.①②6.已知⊙O的半径是4,圆心O到直线l的距离d=1.则直线l与⊙O的位置关系是()A.相离 B.相切 C.相交 D.无法判断7.设A(﹣2,y1)、B(1,y2)、C(2,y3)是双曲线上的三点,则()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y28.如图,若点P在反比例函数y=(k≠0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,若矩形PMON的面积为6,则k的值是()A.-3 B.3 C.-6 D.69.己知的半径为,点是线段的中点,当时,点与的位置关系是()A.点在外 B.点在上 C.点在内 D.不能确定10.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°二、填空题(每小题3分,共24分)11.如图,内接于,则的半径为__________.12.已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.13.关于的方程有一个根,则另一个根________.14.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.15.将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是.16.圆锥的底面半径为6,母线长为10,则圆锥的侧面积为__________.17.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.18.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为__________三、解答题(共66分)19.(10分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.20.(6分)计算:2cos230°+﹣sin60°.21.(6分)如图,已知△ABC,∠A=60°,AB=6,AC=1.(1)用尺规作△ABC的外接圆O;(2)求△ABC的外接圆O的半径;(3)求扇形BOC的面积.22.(8分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.(1)求证:EF=ED;(2)若AB=2,CD=1,求FE的长.23.(8分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.24.(8分)如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点、重合).(1)当圆心在内部,∠ABO+∠ADO=70°时,求∠BOD的度数;(2)当点A在优弧BD上运动,四边形为平行四边形时,探究与的数量关系.25.(10分)若一条圆弧所在圆半径为9,弧长为,求这条弧所对的圆心角.26.(10分)如图,的直径,半径,为上一动点(不包括两点),,垂足分别为.(1)求的长.(2)若点为的中点,①求劣弧的长度,②者点为直径上一动点,直接写出的最小值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【题目点拨】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、B【分析】根据二次函数的图象可逐项判断求解即可.【题目详解】解:抛物线与x轴有两个交点,
∴△>0,
∴b2−4ac>0,故①错误;
由于对称轴为x=−1,
∴x=−3与x=1关于x=−1对称,
∵x=−3,y<0,
∴x=1时,y=a+b+c<0,故②错误;
∵对称轴为x=−=−1,
∴2a−b=0,故③正确;
∵顶点为B(−1,3),
∴y=a−b+c=3,
∴y=a−2a+c=3,
即c−a=3,故④正确,
故选B.【题目点拨】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型.3、C【分析】根据一元二次方程的定义进行排除选择即可,一元二次方程的关键是方程中只包含一个未知数,且未知数的指数为2.【题目详解】根据一元二次方程的定义可知含有一个未知数且未知数的指数是2的方程为一元二次方程,所以A,B,D均符合一元二次方程的定义,C选项展开移项整理后不含有未知数,不符合一元二次方程的定义,所以错误,故选C.【题目点拨】本题考查的是一元二次方程的定义,熟知此定义是解题的关键.4、D【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【题目详解】解:旋转角是故选:D.【题目点拨】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.5、A【解题分析】利用三角形的内角和定理及两组角分别相等证明①正确;根据两组边成比例夹角相等判断②正确;利用③的相似三角形证得∠AEC=∠DBC,又对顶角相等,证得③正确;根据△ACE∽△DCB证得F、E、B、C四点共圆,由此推出△DCF∽△DGC,列比例线段即可证得④正确.【题目详解】①正确;在等腰△ACD和等腰△ECB中AC=AD,EC=EB,∠DAC=∠CEB,∴∠ACD=∠ADC=∠BCE=∠BEC,∴∠DCG=180-∠ACD-∠BCE=∠BEC,∵∠DGC=∠BGE,∴△DCG∽△BEG;②正确;∵∠ACD+∠DCG=∠BCE+∠DCG,∴∠ACE=∠DCB,∵,∴△ACE∽△DCB;③正确;∵△ACE∽△DCB,∴∠AEC=∠DBC,∵∠FGE=∠CGB,∴△FGE∽△CGB,∴GF·GB=GC·GE;④正确;如图,连接CF,由②可得△ACE∽△DCB,∴∠AEC=∠DBC,∴F、E、B、C四点共圆,∴∠CFB=∠CEB=90,∵∠ACD=∠ECB=45,∴∠DCE=90,∴△DCF∽△DGC∴,∴,∵,∴2AD2=DF·DG.故选:A.【题目点拨】此题考查相似三角形的判定及性质,等腰三角形的性质,③的证明可通过②的相似推出所需要的条件继而得到证明;④是本题的难点,需要重新画图,并根据条件判定DF、DG所在的三角形相似,由此可判断连接CF,由此证明F、E、B、C四点共圆,得到∠CFB=∠CEB=90是解本题关键.6、A【解题分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【题目详解】解:∵圆心O到直线l的距离d=1,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【题目点拨】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..7、B【分析】将A、B、C的横坐标代入双曲线,求出对应的横坐标,比较即可.【题目详解】由题意知:A(﹣2,y1)、B(1,y2)、C(2,y3)在双曲线上,将代入双曲线中,得∴.故选B.【题目点拨】本题主要考查了双曲线函数的性质,正确掌握双曲线函数的性质是解题的关键.8、C【解题分析】设PN=a,PM=b,则ab=6,∵P点在第二象限,∴P(-a,b),代入y=中,得k=-ab=-6,故选C.9、C【分析】首先根据题意求出OA,然后和半径比较大小即可.【题目详解】由已知,得OA=OP=4cm,∵的半径为∴OA<5∴点在内故答案为C.【题目点拨】此题主要考查点和圆的位置关系,解题关键是找出点到圆心的距离.10、D【解题分析】解:∵B是弧AC的中点,∴∠AOB=2∠BDC=80°.又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.点睛:本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.二、填空题(每小题3分,共24分)11、2【分析】连接OA、OB,求出∠AOB=得到△ABC是等边三角形,即可得到半径OA=AB=2.【题目详解】连接OA、OB,∵,∴∠AOB=,∵OA=OB,∴△ABC是等边三角形,∴OA=AB=2,故答案为:2.【题目点拨】此题考查圆周角定理,同弧所对的圆周角等于圆心角的一半.12、(4,0).【分析】先把(1,0)代入y=x2-5x+m求出m得到抛物线解析式为y=x2-5x+4,然后解方程x2-5x+4=0得到抛物线与x轴的另一个交点的坐标.【题目详解】解:把(1,0)代入y=x2-5x+m得1-5+m=0,解得m=4,所以抛物线解析式为y=x2-5x+4,当y=0时,x2-5x+4=0,解得x1=1,x2=4,所以抛物线与x轴的另一个交点的坐标为(4,0).故答案为(4,0).【题目点拨】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程问题.13、2【分析】由根与系数的关系,根据两根之和为计算即可.【题目详解】∵关于的方程有一个根,
∴
解得:;
故答案为:.【题目点拨】本题考查了一元二次方程根与系数的关系,熟记根与系数的关系的结构是解题的关键.14、5.【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分
N在矩形ABCD内部与
N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【题目详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4.设AM=MN=x,∵MD=5﹣x,MC=4+x,∴在Rt△MDC中,CD5+MD5=MC5,35+(5﹣x)5=(4+x)5,解得x=3;当∠BNC=90°,N在矩形ABCD外部时,如图5.∵∠BNC=∠MNB=90°,∴M、C、N三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4,设AM=MN=y,∵MD=y﹣5,MC=y﹣4,∴在Rt△MDC中,CD5+MD5=MC5,35+(y﹣5)5=(y﹣4)5,解得y=9,则所有符合条件的M点所对应的AM和为3+9=5.故答案为5.【题目点拨】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.15、y=x1+x﹣1.【解题分析】根据平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,将抛物线y=x1+x向下平移1个单位,所得抛物线的表达式是y=x1+x﹣1.16、【分析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.【题目详解】圆锥的侧面积=×6×10=60cm1.故答案为.【题目点拨】本题考查圆锥侧面积公式的运用,掌握公式是关键.17、.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2,b最小是3,再根据二次函数的增减性和对称性判断出对称轴小于2.5,然后列出不等式求解即可:【题目详解】解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,b最小是3.∴根据二次函数的增减性和对称性知,的对称轴的左侧,∵,∴.∴实数m的取值范围是.考点:1.二次函数图象上点的坐标特征;2.二次函数的性质;3.三角形三边关系.18、【分析】由旋转角的定义可得∠DCM=75°,进一步可得∠NCO=60°,△NOC是30°直角三角形,设DE=a,将OC,CD用a表示,最后代入即可解答.【题目详解】解:由题意得∠DCM=75°,∠NCM=∠ECD=45°∴∠NCO=180°-75°-45°=60°∴∠ONC=90°-60°=30°设CD=a,CN=CE=a∴OC=CN=∴故答案为.【题目点拨】本题主要考查了旋转的性质、等腰直角三角形的性质,抓住旋转的旋转方向、旋转角,找到旋转前后的不变量是解答本题的关键.三、解答题(共66分)19、(1)75°(2)见解析【解题分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【题目详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【题目点拨】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.20、【分析】先根据特殊三角函数值计算,然后再进行二次根式的加减.【题目详解】原式=,=,=.【题目点拨】本题主要考查特殊三角函数值,解决本题的关键是要熟练掌握特殊三角函数值.21、(1)见解析;(2);(3)【分析】(1)分别作出线段BC,线段AC的垂直平分线EF,MN交于点O,以O为圆心,OB为半径作⊙O即可.(2)连接OB,OC,作CH⊥AB于H.解直角三角形求出BC,即可解决问题.(3)利用扇形的面积公式计算即可.【题目详解】(1)如图⊙O即为所求.(2)连接OB,OC,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=1,∠A=60°,∴∠ACH=30°,∴AHAC=2,CHAH=2,∵AB=6,∴BH=1,∴BC2,∵∠BOC=2∠A=120°,OB=OC,OF⊥BC,∴BF=CF,∠COF∠BOC=60°,∴OC.(3)S扇形OBC.【题目点拨】本题考查了作图﹣复杂作图,勾股定理,解直角三角形,三角形的外接圆与外心等知识,解答本题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22、(1)见解析;(2)EF=.【解题分析】(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.【题目详解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵将△ADC绕点A顺时针旋转90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=【题目点拨】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.23、解:(3)一次函数的表达式为(4)当销售单价定为4元时,商场可获得最大利润,最大利润是893元(3)销售单价的范围是.【解题分析】(3)列出二元一次方程组解出k与b的值可求出一次函数的表达式.(4)依题意求出W与x的函数表达式可推出当x=4时商场可获得最大利润.(3)由w=500推出x4﹣380x+7700=0解出x的值即可.【题目详解】(3)根据题意得:,解得k=﹣3,b=3.所求一次函数的表达式为;(4)=,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而销售单价不低于成本单价,且获利不得高于45%,即60≤x≤60×(3+45%),∴60≤x≤4,∴当x=4时,W==893,∴当销售单价定为4元时,商场可获得最大利润,最大利润是893元.(3)令w=500,解方程,解得,,又∵60≤x≤4,所以当w≥500时,70≤x≤4.考点:3.二次函数的应用;4.应用题.24、(1)140°;(2)当点A在优弧BD上运动,四边形为平行四边形时,点O在∠BAD内部时,+=60°;点O在∠BAD外部时,|-|=60°.【解题分析】(1)连接OA,如图1,根据等腰三角形的性质得∠OAB=∠ABO,∠OAD=∠ADO,则∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根据圆周角定理易得∠BOD=2∠BAD=140°;(2)分点O在∠BAD内部和外部两种情形分类讨论:①当点O在∠BAD内部时,首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据平行四边形的性质,求出∠OBC、∠ODC的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②当点O在∠BAD外部时:Ⅰ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠OBA=∠ODA+60°即可.Ⅱ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠ODA=∠OBA+60°即可.【题目详解】(1)连接OA,如图1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如图2,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如图3,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 警惕:人工智能的威胁
- 宁夏七科考试题目及答案
- 联通传输维护考试及答案
- 伟人介绍课件
- 感谢信题目及答案
- 服务顾问考试题及答案
- 企事业治安培训
- 小学五年级语文上册第七单元四季之美景物描写课件
- 2026年中国人民大学劳动人事学院招聘备考题库及参考答案详解1套
- 深度解析(2026)《GBT 33985-2017电工产品标准中包括安全方面的导则 引入风险评估的因素》(2026年)深度解析
- 中国石油大学(华东)自动控制课程设计 双容水箱系统的建模、仿真于控制-2
- 潘谢矿区西淝河、泥河、济河、港河水体下安全开采可行性论证报告
- 2023版押品考试题库必考点含答案
- 创业人生(上海大学)【超星尔雅学习通】章节答案
- 2015-2022年哈尔滨铁道职业技术学院高职单招语文/数学/英语笔试参考题库含答案解析
- GB/T 4957-2003非磁性基体金属上非导电覆盖层覆盖层厚度测量涡流法
- 钻井工程防漏堵漏技术演示文稿
- GB/T 2624.1-2006用安装在圆形截面管道中的差压装置测量满管流体流量第1部分:一般原理和要求
- 小儿癫痫的诊治现状课件
- 《艺术概论》考试复习题库(附答案)
- 智慧能源-智慧能源管理平台建设方案
评论
0/150
提交评论