湖南省娄底市冷水江潘桥中学2022-2023学年高二数学文联考试题含解析_第1页
湖南省娄底市冷水江潘桥中学2022-2023学年高二数学文联考试题含解析_第2页
湖南省娄底市冷水江潘桥中学2022-2023学年高二数学文联考试题含解析_第3页
湖南省娄底市冷水江潘桥中学2022-2023学年高二数学文联考试题含解析_第4页
湖南省娄底市冷水江潘桥中学2022-2023学年高二数学文联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省娄底市冷水江潘桥中学2022-2023学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:根据表中数据得到,因为,则认为“喜欢玩电脑游戏与认为作业量的多少有关系”的把握大约为A.2.5%

B.95%

C.97.5%

D.不具有相关性参考答案:C略2.已知函数.若不等式的解集中整数的个数为3,则a的取值范围是(

)A. B.C. D.参考答案:D【分析】将问题变为,即有个整数解的问题;利用导数研究的单调性,从而可得图象;利用恒过点画出图象,找到有个整数解的情况,得到不等式组,解不等式组求得结果.【详解】由得:,即:令,当时,;当时,在上单调递减;在上单调递增,且,由此可得图象如下图所示:由可知恒过定点不等式的解集中整数个数为个,则由图象可知:,即,解得:本题正确选项:【点睛】本题考查根据整数解的个数求解参数取值范围的问题,关键是能够将问题转化为曲线和直线的位置关系问题,通过数形结合的方式确定不等关系.3.已知x,y,a,b

)A、

B、

C、

D、a+b参考答案:A4.函数的图象如图所示,若,则等于(

)A.

B.C.0

D.参考答案:C略5.已知点M是抛物线y2=4x上的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为

A.1

B.2

C.3

D.4参考答案:D略6.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3参考答案:BD试题分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.考点:利用导数研究曲线上某点切线方程.7.在△ABC中,已知a2=b2+c2+bc,则角A为()A. B. C. D.或参考答案:C【考点】HR:余弦定理.【分析】根据余弦定理表示出cosA,然后把已知的等式代入即可求出cosA的值,由A的范围,根据特殊角的三角函数值即可得到A的度数.【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C8.在等比数列{}中,若前10项的和,若前20项的和,则前30项的和

(

)A.60

B.70

C.80

D.90参考答案:B9.若p是假命题,q是假命题,则()A.p∧q是真命题 B.p∨q是假命题 C.¬p是假命题 D.¬q是假命题参考答案:B【考点】复合命题的真假.【分析】利用复合命题的真假写出结果即可.【解答】解:p是假命题,q是假命题,¬p是真命题,¬q是真命题,可得p∨q是假命题.故选:B.10.直线的方向向量,平面的法向量,则有(

)A.∥

B.⊥

C.与斜交

D.或∥参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知平行六面体ABCD﹣A1B1C1D1所有棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,则AC1的长为.参考答案:【考点】棱柱的结构特征.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】由已知得=,由此利用向量法能求出AC1的长.【解答】解:∵平行六面体ABCD﹣A1B1C1D1所有棱长均为1,∠BAD=∠BAA1=∠DAA1=60°,∴=,∴2=()2=+2||?||cos60°+2?||cos60°+2?cos60°=1+1+1+++=6,∴AC1的长为||=.故答案为:.【点评】本题考查线段长的求法,是基础题,解题时要认真审题,注意向量法的合理运用.12.设F1、F2分别是椭圆的左、右焦点,P为椭圆上任一点,点M的坐标为(3,1),则|PM|+|PF1|的最大值为.参考答案:11【考点】椭圆的简单性质.【专题】转化思想;转化法;圆锥曲线的定义、性质与方程.【分析】利用椭圆的定义表示出|PA|+|PF1|,通过利用三点共线求出最大值.【解答】解:将M的坐标代入椭圆方程可得,即M在椭圆内,连结PF2、MF2F1(﹣3,0),F2(3,0),由椭圆的定义可得,|PF1|+|PF2|=2a=10,则|PM|+|PF1|=||PF1|+|PF2|+|PM|﹣|PF2|=2a+|PM|﹣|PF2|﹣|MF2|≤|PM|﹣||PF2|≤|MF2|=1.则|PM|+|PF1|的最大值为2a+1=11.故答案为:11【点评】本题考查椭圆的定义以及第二定义的应用,表达式的几何意义的应用,考查转化思想与计算能力.属于中档题.13.三棱锥的三视图如下(尺寸的长度单位为).则这个三棱锥的体积为

_________;参考答案:14.设数列的前项和为(),关于数列有下列三个命题:①若既是等差数列又是等比数列,则();②若,则是等差数列;③若,则是等比数列.其中正确命题的序号是

.参考答案:①②③略15.已知函数,则

.参考答案:7略16.已知两条直线,∥平面,,则直线与的位置关系是

.参考答案:平行或异面17.如果实数x,y满足等式(x﹣2)2+y2=1,那么的取值范围是.参考答案:[,+∞)【考点】直线与圆的位置关系.【分析】设k=,则y=kx﹣(k+3)表示经过点P(1,﹣3)的直线,k为直线的斜率,所以求的取值范围就等价于求同时经过点P(1,﹣3)和圆上的点的直线中斜率的最大最小值,当过P直线与圆相切时,如图所示,直线PA与直线PB与圆相切,此时直线PB斜率不存在,利用点到直线的距离公式表示出圆心C到直线PA的距离d,令d=r求出此时k的值,确定出t的范围,即为所求式子的范围.【解答】解:设k=,则y=kx﹣(k+3)表示经过点P(1,﹣3)的直线,k为直线的斜率,∴求的取值范围就等价于求同时经过点P(1,﹣3)和圆上的点的直线中斜率的最大最小值,从图中可知,当过P的直线与圆相切时斜率取最大最小值,此时对应的直线斜率分别为kPB和kPA,其中kPB不存在,由圆心C(2,0)到直线y=kx﹣(k+3)的距离=r=1,解得:k=,则的取值范围是[,+∞).故答案为:[,+∞)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分10分)若实数、、满足,则称比接近.(1)若比3接近0,求的取值范围;(2)对任意两个不相等的正数、,求证:比接近。参考答案:(本题满分10分)解:(1)∵比3接近0

解得

∴的取值范围为(-2,2);

(2)对任意两个不相等的正数a、b,有,,

因为,

所以,即a2b+ab2比a3+b3接近略19.以直角坐标系的原点为极点,x轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位.已知:直线l的参数方程为

(t为参数),曲线C的极坐标方程为(1+sin2θ)ρ2=2.(1)写出直线l的普通方程与曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,若点P为(1,0),求+.参考答案:【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)直线l的参数方程为

(t为参数),消去参数t得直线l的普通方程;曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2;(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0,利用参数的几何意义,即可求+.【解答】解:(1)直线l的参数方程为

(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.20.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=x3﹣x+8(0<x≤120)已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?参考答案:【考点】利用导数研究函数的极值;函数模型的选择与应用.【分析】(I)把用的时间求出,在乘以每小时的耗油量y即可.(II)求出耗油量为h(x)与速度为x的关系式,再利用导函数求出h(x)的极小值判断出就是最小值即可.【解答】解:(I)当x=40时,汽车从甲地到乙地行驶了小时,要耗油(升).答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.(II)当速度为x千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为h(x)升,依题意得,.令h'(x)=0,得x=80.当x∈(0,80)时,h'(x)<0,h(x)是减函数;当x∈(80,120)时,h'(x)>0,h(x)是增函数.∴当x=80时,h(x)取到极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.21.已知△ABC的三个顶点A(﹣1,0),B(1,0),C(3,2),其外接圆为⊙H.若直线l过点C,且被⊙H截得的弦长为2,求直线l的方程.参考答案:【考点】直线与圆的位置关系.【专题】计算题;转化思想;综合法;直线与圆.【分析】先求出圆H的方程,再根据直线l过点C,且被⊙H截得的弦长为2,设出直线方程,利用勾股定理,即可求直线l的方程【解答】解:线段AB的垂直平分线方程为x=0,线段BC的垂直平分线方程为x+y﹣3=0,所以外接圆圆心为H(0,3),半径为,故⊙H的方程为x2+(y﹣3)2=10.设圆心H到直线l的距离为d,因为直线l被⊙H截得的弦长为2,所以.当直线l垂直于x轴时,显然符合题意,即x=3为所求;当直线l不垂直于x轴时,设直线方程为y﹣2=k(x﹣3),则,解得.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论