版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省汉中市名校数学九年级第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1442.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定3.关于反比例函数y=,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上4.下列关于抛物线有关性质的说法,正确的是()A.其图象的开口向下 B.其图象的对称轴为C.其最大值为 D.当时,随的增大而减小5.若点在反比例函数上,则的值是()A. B. C. D.6.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=1757.一元二次方程配方后化为()A. B. C. D.8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120° B.130° C.140° D.150°9.已知⊙O的半径为4,圆心O到弦AB的距离为2,则弦AB所对的圆周角的度数是()A.30° B.60°C.30°或150° D.60°或120°10.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1 B.2 C.-1或2 D.-1或2或111.如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.12.如图,在平面直角坐标系中,点的坐标为,那么的值是()A. B. C. D.二、填空题(每题4分,共24分)13.已知,则___________.14.在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为________.15.如图,若抛物线与轴无交点,则应满足的关系是__________.16.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.17.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是_____.18.如图,在中,,,延长至点,使,则________.三、解答题(共78分)19.(8分)某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?20.(8分)综合与实践:操作与发现:如图,已知A,B两点在直线CD的同一侧,线段AE,BF均是直线CD的垂线段,且BF在AE的右边,AE=2BF,将BF沿直线CD向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线CD相交于点P,点G是AE的中点,连接BG.探索与证明:求证:(1)四边形EFBG是矩形;(2)△ABG∽△PBF.21.(8分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.22.(10分)在不透明的箱子中,装有红、白、黑各一个球,它们除了颜色之外,没有其他区别.(1)随机地从箱子里取出一个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,然后放回,再摇匀取出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.23.(10分)如图①,是一张直角三角形纸片,∠B=90°,AB=12,BC=8,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.(1)请通过计算说明小明的猜想是否正确;(2)如图②,在△ABC中,BC=10,BC边上的高AD=10,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求矩形PQMN面积的最大值;(3)如图③,在五边形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.24.(10分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?25.(12分)在精准脱贫期间,江口县委、政府对江口教育制定了目标,为了保证2018年中考目标的实现,对九年级进行了一次模拟测试,现对这次模拟测试的数学成绩进行了分段统计,统计如表,共有2500名学生参加了这次模拟测试,为了解本次考试成绩,从中随机抽取了部分学生的数学成绩x(得分均为整数,满分为100分)进行统计后得到下表,请根据表格解答下列问题:(1)随机抽取了多少学生?(2)根据表格计算:a=;b=.分组频数频率x<30140.0730≤x<6032b60≤x<90a0.6290≤x300.15合计﹣1(3)设60分(含60)以上为合格,请据此估计我县这次这次九年级数学模拟测试成绩合格的学生有多少名?26.已知关于的方程.(1)求证:无论为何值,该方程都有两个不相等的实数根;(2)若该方程的一个根为-1,则另一个根为.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.2、B【分析】根据根的判别式(),求该方程的判别式,根据结果的正负情况即可得到答案.【题目详解】解:根据题意得:△=22-4×1×(-1)
=4+4
=8>0,即该方程有两个不相等的实数根,
故选:B.【题目点拨】本题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3、C【分析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【题目详解】A.反比例函数的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【题目点拨】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.4、D【分析】根据抛物线的表达式中系数a的正负判断开口方向和函数的最值问题,根据开口方向和对称轴判断函数增减性.【题目详解】解:∵a=2>0,∴抛物线开口向上,故A选项错误;抛物线的对称轴为直线x=3,故B选项错误;抛物线开口向上,图象有最低点,函数有最小值,没有最大值,故C选项错误;因为抛物线开口向上,所以在对称轴左侧,即x<3时,y随x的增大而减小,故D选项正确.故选:D.【题目点拨】本题考查二次函数图象和性质,掌握图象特征与系数之间的关系即数形结合思想是解答此题的关键.5、C【分析】将点(-2,-6)代入,即可计算出k的值.【题目详解】∵点(-2,-6)在反比例函数上,∴k=(-2)×(-6)=12,故选:C.【题目点拨】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键.6、D【分析】增长率问题,一般为:增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【题目详解】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故根据题意可列方程为:50+50(1+x)+50(1+x)2=1.故选D.【题目点拨】本题考查的是一元二次方程的运用,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可.7、A【分析】先把常数项移到方程的右边,再在方程两边同时加上一次项系数一半的平方,即可.【题目详解】移项得:,方程两边同加上9,得:,即:,故选A.【题目点拨】本题主要考查解一元二次方程的配方法,熟练掌握完全平方公式,是解题的关键.8、C【解题分析】试题分析:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.考点:垂线的定义;平行线的性质;三角形的外角性质9、D【分析】根据题意作出图形,利用三角形内角和以及根据圆周角定理和圆内接四边形的性质进行分析求解.【题目详解】解:如图,∵OH⊥AB,OA=OB=4,∴∠AHO=90°,在Rt△OAH中,sin∠OAH=∴∠OAH=30°,∴∠AOB=180°-30°-30°=120°,∴∠ACB=∠AOB=60°,∠ADB=180°-∠ACB=120°(圆内接四边形的性质),即弦AB所对的圆周角的度数是60°或120°.故选:D.【题目点拨】本题考查圆周角定理,圆周角定理即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、D【分析】当a-1=0,即a=1时,函数为一次函数,与x轴有一个交点;当a﹣1≠0时,利用判别式的意义得到,再求解关于a的方程即可得到答案.【题目详解】当a﹣1=0,即a=1,函数为一次函数y=-4x+2,它与x轴有一个交点;当a﹣1≠0时,根据题意得解得a=-1或a=2综上所述,a的值为-1或2或1.故选:D.【题目点拨】本题考察了一次函数、二次函数图像、一元二次方程的知识;求解的关键是熟练掌握一次函数、二次函数的性质,从而完成求解.11、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【题目详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【题目点拨】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.12、D【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解.【题目详解】如图,过A作AB⊥x轴于点B,∵A的坐标为(4,3)∴OB=4,AB=3,在Rt△AOB中,∴故选:D.【题目点拨】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【题目详解】解:∵,设a=2k,b=5k,∴【题目点拨】本题考查了比例的性质,属于简单题,设k法是解题关键.14、1【分析】根据同一时刻物高与影长成正比即可得出结论.【题目详解】解:设这栋楼的高度为hm,∵在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,∴,解得h=1(m).故答案为1.【题目点拨】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15、【分析】根据抛物线与轴交点个数与的符号关系即可得出结论.【题目详解】解:∵抛物线与轴无交点∴故答案为:.【题目点拨】此题考查的是根据抛物线与轴交点个数判断的关系,掌握抛物线与轴交点个数与的符号关系是解决此题的关键.16、310【分析】利用配方法将函数解析式转化为顶点式,利用二次函数的性质,可求得铅球行进的最大高度;铅球推出后落地时,高度y=0,把实际问题可理解为当y=0时,求得x的值就是铅球落地时的水平距离.【题目详解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因为﹣<0所以当x=4时,y有最大值为3.所以铅球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以铅球落地时的水平距离是10m.故答案为3、10.【题目点拨】此题考查了函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解.正确解答本题的关键是掌握二次函数的性质.17、【解题分析】试题解析:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0);故答案为(,0).18、【分析】过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,目的得到直角三角形利用三角函数得△AFC三边的关系,再证明△ACF∽△DCE,利用相似三角形性质得出△DCE各边比值,从而得解.【题目详解】解:过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,∵,∴∠B=∠ACF,sin∠ACF==,设AF=4k,则AC=5k,CD=,由勾股定理得:FC=3k,∵∠ACF=∠DCE,∠AFC=∠DEC=90°,∴△ACF∽△DCE,∴AC:CD=CF:CE=AF:DE,即5k:=3k:CE=4k:DE,解得:CE=,DE=2k,即AE=AC+CE=5k+=,∴在Rt△AED中,DE:AE=2k:=.故答案为:.【题目点拨】本题考查三角函数定义、相似三角形的判定与性质,解题关键是构造直角三角形.三、解答题(共78分)19、(1)每件玩具的售价为80元;(2)每件玩具的售价为85元时,每天盈利最多,最多盈利1250元.【分析】(1)根据题意,可以得到关于x的一元二次方程,从而可以解答本题;(2)根据题意可以得到利润与售价的函数关系式,然后根据二次函数的性质即可解答本题.【题目详解】解:(1)设每件玩具的售价为元,,解得:,,∵扩大销售,增加盈利,尽快减少库存,∴,答:每件玩具的售价为80元;(2)设每件玩具的售价为元时,利润为元,,即当时,有最大值为1250元,答:当每件玩具的售价为85元时,商店每天盈利最多,最多盈利1250元.【题目点拨】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质解答.20、(1)见解析;(2)见解析.【分析】(1)先通过等量代换得出GE=BF,然后由AE⊥CD,BF⊥CD得出AE∥BF,从而得到四边形EFBG是平行四边形,最后利用BF⊥CD,则可证明平行四边形EFBG是矩形;(2)先通过矩形的性质得出∠AGB=∠GBF=∠BFE=90°,然后通过等量代换得出∠ABG=∠PBF,再加上∠AGB=∠PFB=90°即可证明△ABG∽△PBF.【题目详解】(1)证明:∵AE⊥CD,BF⊥CD,∴AE∥BF,∵AE=2BF,∴BF=AE,∵点G是AE的中点,∴GE=AE,∴GE=BF,又AE∥BF,∴四边形EFBG是平行四边形,∵BF⊥CD,∴平行四边形EFBG是矩形;(2)∵四边形EFBG是矩形,∴∠AGB=∠GBF=∠BFE=90°,∵∠ABP=90°,∴∠ABP﹣∠GBP=∠GBF﹣∠GBP,即∠ABG=∠PBF,∵∠ABG=∠PBF,∠AGB=∠PFB=90°,∴△ABG∽△PBF.【题目点拨】本题主要考查矩形的判定及性质,相似三角形的判定,掌握矩形的判定及性质和相似三角形的判定方法是解题的关键.21、(1)证明见详解;(2);(3)30°或45°.【分析】(1)由题意:∠E=90°-∠ADE,证明∠ADE=90°-∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,,由BD:DE=2:3,可得cos∠ABC=;(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【题目详解】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE=(∠ABC+∠BAC)=90°-∠C,∴∠E=90°-(90°-∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC=;(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°;②当∠C=∠DAE=90°时,∠E=∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°;综上所述,∠ABC=30°或45°.【题目点拨】本题属于相似形综合题,考查相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题.22、(1);(2)【分析】(1)已知由在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,所以可利用概率公式求解即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出相同颜色球的情况,再利用概率公式即可求得答案.【题目详解】解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:.考点:用列表法或树状图法求概率.23、(1)正确,理由见解析;(2)当a=5时,S矩形MNPQ最大为25;(3)矩形的最大面积为1.【分析】(1)设BF=x,则AF=12﹣x,证明△AFE∽△ABC,进而表示出EF,利用面积公式得出S矩形BDEF=﹣(x﹣6)2+24,即可得出结论;(2)设DE=a,AE=10﹣a,则证明△APN∽△ABC,进而得出PN=10﹣a,利用面积公式S矩形MNPQ=﹣(a﹣5)2+25,即可得出结果;(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,连接IK,过点K作KL⊥BC于L,由矩形性质知AE=EH=10、CD=DH=8,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=8、CG=HE=10,从而判断出中位线IK的两端点在线段AB和DE上,利用(1)的结论解答即可.【题目详解】(1)正确;理由:设BF=x(0<x<12),∵AB=12,∴AF=12﹣x,过点F作FE∥BC交AC于E,过点E作ED∥AB交BC于D,∴四边形BDEF是平行四边形,∵∠B=90°,∴▱BDEF是矩形,∵EF∥BC,∴△AFE∽△ABC,∴=,∴,∴EF=(12﹣x),∴S矩形BDEF=EF•BF=(12﹣x)•x=﹣(x﹣6)2+24∴当x=6时,S矩形BDEF最大=24,∴BF=6,AF=6,∴AF=BF,∴当沿着中位线DE、EF剪下时,所得的矩形的面积最大;(2)设DE=a,(0<a<10),∵AD=10,∴AE=10﹣a,∵四边形MNPQ是矩形,∴PQ=DE=a,PN∥BC,∴△APN∽△ABC,∴=,∴=,∴PN=10﹣a,∴S矩形MNPQ=PN•PQ=(10﹣a)•a=﹣(a﹣5)2+25,∴当a=5时,S矩形MNPQ最大为25;(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,连接IK,过点K作KL⊥BC于L,如图③所示:∵∠A=∠HAB=∠BCH=90°,∴四边形ABCH是矩形,∵AB=16,BC=20,AE=10,CD=8,∴EH=10、DH=8,∴AE=EH、CD=DH,在△AEF和△HED中,,∴△AEF≌△HED(ASA),∴AF=DH=8,∴BF=AB+AF=16+8=24,同理△CDG≌△HDE,∴CG=HE=10,∴BG=BC+CG=20+10=30,∴BI=BF=12,∵BI=12<16,∴中位线IK的两端点在线段AB和DE上,∴IK=BG=15,由(1)知矩形的最大面积为BI•IK=12×15=1.【题目点拨】本题是四边形综合题,主要考查矩形的判定与性质、平行四边形的判定、全等三角形的判定与性质、中位线定理、相似三角形的判定与性质等知识;熟练掌握矩形的性质、全等三角形的判定与相似三角形的判定是解题的关键.24、(1)2千米;(2)y=90x﹣24(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国邮电器材集团有限公司招聘备考题库有答案详解
- 2025年“才聚齐鲁成就未来”山东黄河生态发展集团有限公司招聘备考题库及1套参考答案详解
- 2026年中化学数智科技有限公司招聘备考题库及一套参考答案详解
- 2026年平湖市青少年宫劳务派遣制教师招聘备考题库有答案详解
- 2026年佛山市顺德区莘村中学招聘临聘俄语教师备考题库及参考答案详解1套
- 2026年大商所飞泰测试技术有限公司招聘备考题库及完整答案详解1套
- 2026年恒丰银行济南分行社会招聘备考题库带答案详解
- 2026年南方医科大学珠江医院大数据中心招聘数据工程师备考题库及一套答案详解
- 2026年北京科技大学智能科学与技术学院招聘备考题库参考答案详解
- 2026年中冶建筑研究总院有限公司招聘备考题库及答案详解1套
- 客户管理全周期客户画像分析模板
- 5S培训教材看图学5S资料
- 酸铜镀层晶体生长机制探讨
- 显示设备安装与调试方案
- 2025年8月30日四川省事业单位选调面试真题及答案解析
- 掘进工安全操作规程
- 2025上海复旦大学人事处招聘办公室行政管理助理岗位1名考试参考试题及答案解析
- 油气井带压作业安全操作流程手册
- 认知障碍老人的护理课件
- 麻醉科业务学习课件
- 绿色低碳微晶材料制造暨煤矸石工业固废循环利用示范产业园环境影响报告表
评论
0/150
提交评论