版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省成武县九年级数学第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.己知的半径为,点是线段的中点,当时,点与的位置关系是()A.点在外 B.点在上 C.点在内 D.不能确定2.如图,点A、B、C是⊙O上的三点,∠BAC=40°,则∠OBC的度数是()A.80° B.40° C.50° D.20°3.如图,已知点是第一象限内横坐标为2的一个定点,轴于点,交直线于点,若点是线段上的一个动点,,,点在线段上运动时,点不变,点随之运动,当点从点运动到点时,则点运动的路径长是()A. B. C.2 D.4.正六边形的边心距与半径之比为()A. B. C. D.5.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移8个单位 D.向右平移8个单位6.下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得7.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离 B.相切 C.相交 D.无法判断8.在中,最简二次根式的个数为()A.1个 B.2个 C.3个 D.4个9.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元10.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.用一个圆心角为150º,半径为8的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为________.12.如图,已知菱形的面积为,的长为,则的长为__________.13.某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______(填“>”、“=”或“<”).14.如图,AB为⊙O的直径,C,D是⊙O上两点,若∠ABC=50°,则∠D的度数为______.15.将一元二次方程变形为的形式为__________.16.已知关于的一元二次方程有两个相等的实数根,则的值是__________.17.抛物线y=x2+2x与y轴的交点坐标是_____.18.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为_____.三、解答题(共66分)19.(10分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.20.(6分)如图所示,线段,,,,点为射线上一点,平分交线段于点(不与端点,重合).(1)当为锐角,且时,求四边形的面积;(2)当与相似时,求线段的长;(3)设,,求关于的函数关系式,并写出定义域.21.(6分)如图,为等腰三角形,,是底边的中点,与腰相切于点.(1)求证:与相切;(2)已知,,求的半径.22.(8分)已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,请直接写出AE的长.23.(8分)如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.24.(8分)有一张长,宽的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为,求纸盒的高.25.(10分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.26.(10分)如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BD=BC,将△AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设△AOB与△BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0<t≤2,2<t≤m,m<t<n时函数解析式不同).(1)点B的坐标为,点D的坐标为;(2)求S与t的函数解析式,并写出t的取值范围.
参考答案一、选择题(每小题3分,共30分)1、C【分析】首先根据题意求出OA,然后和半径比较大小即可.【题目详解】由已知,得OA=OP=4cm,∵的半径为∴OA<5∴点在内故答案为C.【题目点拨】此题主要考查点和圆的位置关系,解题关键是找出点到圆心的距离.2、C【解题分析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.3、D【分析】根据题意利用相似三角形可以证明线段就是点运动的路径(或轨迹),又利用∽求出线段的长度,即点B运动的路径长.【题目详解】解:由题意可知,,点在直线上,轴于点,则为顶角30度直角三角形,.如下图所示,设动点在点(起点)时,点的位置为,动点在点(终点)时,点的位置为,连接,∵,∴又∵,∴(此处也可用30°角的)∴∽,且相似比为,∴现在来证明线段就是点运动的路径(或轨迹).如图所示,当点运动至上的任一点时,设其对应的点为,连接,,∵,∴又∵,∴∴∽∴又∵∽∴∴∴点在线段上,即线段就是点运动的路径(或轨迹).综上所述,点运动的路径(或轨迹)是线段,其长度为.故选:【题目点拨】本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中.4、C【分析】我们可设正六边形的边长为2,欲求半径、边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.【题目详解】如右图所示,边长AB=2;又该多边形为正六边形,故∠OBA=60°,在Rt△BOG中,BG=1,OG=,所以AB=2,即半径、边心距之比为.故选:C.【题目点拨】此题主要考查正多边形边长的计算问题,要求学生熟练掌握应用.5、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【题目详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【题目点拨】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6、C【解题分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【题目详解】A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.【题目点拨】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.7、C【解题分析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.8、A【分析】根据最简二次根式的条件进行分析解答即可.【题目详解】解:不是最简二次根式,是最简二次根式.故选A.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、A【解题分析】.所以4月份营业额约为3×30=90(万元).10、B【解题分析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.二、填空题(每小题3分,共24分)11、【分析】根据扇形条件计算出扇形弧长,由此得到其所围成的圆锥的底面圆周长,由圆的周长公式计算底面圆的半径.【题目详解】∵圆心角为150º,半径为8∴扇形弧长:∴其围成的圆锥的底面圆周长为:∴设底面圆半径为则,得故答案为:.【题目点拨】本题考查了扇形弧长的计算,及扇形与圆锥之间的对应关系,熟知以上内容是解题的关键.12、3【分析】根据菱形面积公式求得.【题目详解】解:【题目点拨】本题主要考查了菱形的对角线互相垂直,菱形的面积公式.13、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【题目详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴故答案为:=.【题目点拨】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.14、40°.【解题分析】根据直径所对的圆心角是直角,然后根据直角三角形的两锐角互余求得∠A的度数,最后根据同弧所对的圆周角相等即可求解.【题目详解】∵AB是圆的直径,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案为:40°.【题目点拨】本题考查了圆周角定理,直径所对的圆周角是直角以及同弧所对的圆周角相等,理解定理是关键.15、【分析】根据完全平方公式配方即可.【题目详解】解:故答案为:.【题目点拨】此题考查的是配方法,掌握完全平方公式是解决此题的关键.16、【解题分析】根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.【题目详解】原方程化为一般形式为:mx2+(2m+1)x=0,∵方程有两个相等的实数根∴(2m+1)2-4m×0=0【题目点拨】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.17、(0,0)【解题分析】令x=0求出y的值,然后写出即可.【题目详解】令x=0,则y=0,所以,抛物线与y轴的交点坐标为(0,0).故答案为(0,0).【题目点拨】本题考查了二次函数图象上点的坐标特征,熟练掌握抛物线与坐标轴的交点的求解方法是解题的关键.18、【分析】根据正六边的性质,正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可.【题目详解】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故答案为:.【题目点拨】此题考查的是正六边形的性质和正三角形的性质,掌握正六边形的性质和正三角形的性质是解决此题的关键.三、解答题(共66分)19、(1)(2).【分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,(乙投放的垃圾恰有一袋与甲投放的垃圾是同类).即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.20、(1)16;(2)2或;(3)【分析】(1)过C作CH⊥AB与H,在Rt△BCH中,求出CH、BH,再求出CD即可解决问题;
(2)分两种情形①∠BCE=∠BAE=90°,由BE=BE,得△BEC≌△BEA;②∠BEC=∠BAE=90°,延长CE交BA延长线于T,得△BEC≌△BET;分别求解即可;
(3)根据DM∥AB,得,构建函数关系式即可;【题目详解】解:(1)如图,过作于,∵,,∴四边形为矩形.在中,,,,∴,∴,则四边形的面积.(2)∵平分,∴,当与相似时,①,∵,∴,∴,在中,,∴.②,延长交延长线于,∵,,,∴,∴,,∵,∴.令,则在中,,,,∴,解得.综上,当与相似时,线段的长为2或.(3)延长交延长线于,∵,∴,∴.在中,.则,又∵,∴,即,解得.【题目点拨】本题考查了全等三角形与相似三角形的判定和性质,三角函数,勾股定理,以及二次函数的应用,正确作出辅助线构造相似三角形与全等三角形是解题的关键.21、(1)详见解析;(2)⊙O的半径为.【分析】(1)欲证AC与圆O相切,只要证明圆心O到AC的距离等于圆的半径即可,即连接OD,过点O作OE⊥AC于E点,证明OE=OD.(2)根据已知可求OA的长,再由等积关系求出OD的长.【题目详解】证明:(1)连结,过点作于点,∵切于,∴,∴,又∵是的中点,∴,∵,∴,∴,∴,即是的半径,∴与相切.(2)连接,则,又为BC的中点,∴,∴在中,,∴由等积关系得:,∴,即O的半径为.【题目点拨】本题考查的是圆的切线的性质和判定,欲证切线,作垂直OE⊥AC于E,证半径OE=OD;还考查了利用面积相等来求OD.22、(1)证明见解析;(2)y=x2-x+1=(x-)2+;(3)AE的长为2-或.【分析】(1)根据等腰直角三角形的性质及三角形内角与外角的关系,易证△ABD∽△DCE.
(2)由△ABD∽△DCE,对应边成比例及等腰直角三角形的性质可求出y与x的函数关系式;
(3)当△ADE是等腰三角形时,因为三角形的腰和底不明确,所以应分AD=DE,AE=DE,AD=AE三种情况讨论求出满足题意的AE的长即可.【题目详解】(1)证明:
∵∠BAC=90°,AB=AC
∴∠B=∠C=∠ADE=45°
∵∠ADC=∠B+∠BAD=∠ADE+∠CDE
∴∠BAD=∠CDE
∴△ABD∽△DCE;
(2)由(1)得△ABD∽△DCE,
∴=,
∵∠BAC=90°,AB=AC=1,
∴BC=,CD=-x,EC=1-y,
∴=,
∴y=x2-x+1=(x-)2+;
(3)当AD=DE时,△ABD≌△CDE,
∴BD=CE,
∴x=1-y,即x-x2=x,
∵x≠0,
∴等式左右两边同时除以x得:x=-1
∴AE=1-x=2-,
当AE=DE时,DE⊥AC,此时D是BC中点,E也是AC的中点,
所以,AE=;
当AD=AE时,∠DAE=90°,D与B重合,不合题意;
综上,在AC上存在点E,使△ADE是等腰三角形,
AE的长为2-或.【题目点拨】本题考查相似三角形的性质、等腰直角三角形的性质、等腰三角形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分别求出点C,顶点D,点A,B的坐标,如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,证明△BCD是直角三角形,即可由三角形的面积公式求出其面积;(2)先求出直线BD的解析式,设P(a,a2﹣2a﹣3),用含a的代数式表示出直线PC的解析式,联立两解析式求出含a的代数式的点F的坐标,过点C作x轴的平行线,交BD于点H,则yH=﹣3,由△CDF与△BEF的面积相等,列出方程,求出a的值,即可写出E,P的坐标.【题目详解】(1)在y=x2﹣2x﹣3中,当x=0时,y=﹣3,∴C(0,﹣3),当x=﹣=1时,y=﹣4,∴顶点D(1,﹣4),当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如图1,连接BC,过点D作DM⊥y轴于点M,作点D作DN⊥x轴于点N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC•BC=×3=3;(2)设直线BD的解析式为y=kx+b,将B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,设P(a,a2﹣2a﹣3),直线PC的解析式为y=mx﹣3,将P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,当y=0时,x=,∴E(,0),联立,解得,,∴F(,),如图2,过点C作x轴的平行线,交BD于点H,则yH=﹣3,∴H(,﹣3),∴S△CDF=CH•(yF﹣yD),S△BEF=BE•(﹣yF),∴当△CDF与△BEF的面积相等时,CH•(yF﹣yD)=BE•(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).【题目点拨】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、一次函数的性质及三角形面积的求解.24、纸盒的高为.【分析】设纸盒的高是,根据题意,其底面的长宽分别为(40-2x)和(30-2x),根据长方形面积公式列方程求解即可.【题目详解】解:设纸盒的高是.依题意,得.整理得.解得,(不合题意,舍去).答:纸盒的高为.【题目点拨】本题考查一元二次方程的应用,根据题意用含x的式子表示底面的长和宽,正确列方程,解方程是本题的解题关键.25、20.3108【分析】(1)先求出样本总数,进而可得出m、n的值;(2)根据(1)中n的值可得出,“乒乓球”所在的扇形的圆心角的度数;(3)依据求简单事件的概率即可求出.【题目详解】解:(1)∵喜欢篮球的是60人,频率是0.25,∴样本数=60÷0.25=1.∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是72人,∴n=72÷1=0.30,m=0.20×1=2.故答案为2,0.30;(2)∵n=0.30,∴0.30×360°=108
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农田水分动态模拟研究
- 消防安全演练评估方案
- 仓库通风系统与火灾防护对策
- 给水工程生态修复措施
- 隧道防水处理施工方案
- 人防建设资金管理
- 储能电站工程风险评估报告
- 隧道渗漏原因分析
- 2026年郑州轨道工程职业学院单招职业倾向性考试题库及答案1套
- 2025年商水人才引进笔试真题及答案
- 2024年11月对口高考各科计算机文化基础练习题(含答案)
- 2025年海南省直及地市、县事业单位招聘考试自然科学专技类(综合应用能力·C类)历年参考题库含答案详解(5卷)
- 2025年同等学力申硕-同等学力(动力工程及工程热物理)历年参考题库含答案解析(5套典型题)
- 隐睾护理查房
- 施工企业奖惩管理办法
- 巡视人员奖惩管理办法
- 保洁员工5S管理
- 成人失禁相关性皮炎的预防与护理(2024年中华护理学会团体标准)
- 篮球裁判员手册(2人执裁与3人执裁2018年版)
- 早产儿脑室内出血预防专家共识(2025)解读
- 2025年中考道德与法治三轮冲刺:主观题常用答题术语速查宝典
评论
0/150
提交评论