基于交互式多模型的机动目标跟踪算法研究的中期报告_第1页
基于交互式多模型的机动目标跟踪算法研究的中期报告_第2页
基于交互式多模型的机动目标跟踪算法研究的中期报告_第3页
基于交互式多模型的机动目标跟踪算法研究的中期报告_第4页
全文预览已结束

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于交互式多模型的机动目标跟踪算法研究的中期报告摘要机动目标跟踪是目标识别、追踪和定位的一个重要研究方向。本文基于交互式多模型的机动目标跟踪算法,对该算法进行了研究,并给出了中期报告。首先介绍了机动目标跟踪的应用背景和研究意义,然后阐述了交互式多模型的机动目标跟踪算法原理及其流程,比较了该算法与传统的单一模型跟踪算法的优势和不足,同时对跟踪数据集和评价指标进行了介绍。接着,给出了目前算法实现情况,并对实验结果进行了分析和总结。最后,提出了下一步的研究计划和工作安排。关键词:机动目标跟踪;交互式多模型;跟踪算法;评价指标;实验结果AbstractManeuveringtargettrackingisanimportantresearchdirectionfortargetidentification,tracking,andpositioning.Basedontheinteractivemultiplemodelmaneuveringtargettrackingalgorithm,thispaperconductsresearchandgivesamidtermreport.Firstly,theapplicationbackgroundandresearchsignificanceofmaneuveringtargettrackingareintroduced.Then,theprincipleandprocessofinteractivemultiplemodelmaneuveringtargettrackingalgorithmareexpounded,andtheadvantagesanddisadvantagesofthisalgorithmarecomparedwithtraditionalsinglemodeltrackingalgorithm,atthesametime,thetrackingdatasetandevaluationindexareintroduced.Furthermore,thecurrentimplementationstatusofthealgorithmisgiven,andtheexperimentalresultsareanalyzedandsummarized.Finally,thenextresearchplanandworkarrangementareproposed.Keywords:maneuveringtargettracking;interactivemultiplemodel;trackingalgorithm;evaluationindex;experimentalresultsIntroductionManeuveringtargettrackingisachallengingtaskduetothecomplexmotionmodels,changingtargetcharacteristicsandenvironmentalconditions.Itiswidelyusedinmilitarysurveillance,remotesensing,trafficmonitoringandotherfields.Thetraditionalsinglemodeltrackingalgorithmhascertainlimitationsintrackingmaneuveringtargets.Inrecentyears,theinteractivemultiplemodel(IMM)algorithmhasbeenproposedandappliedtothemaneuveringtargettrackingproblem.TheIMMalgorithmcantracktargetswithdifferentmotionmodelsbycombiningmultipleKalmanfilters.Thecombinationweightsofdifferentmodelsareupdatedbythelikelihoodofthemeasurementinnovationvector.Inthisreport,weconductresearchontheIMMmaneuveringtargettrackingalgorithmandgiveamidtermreport.Firstly,weintroducetheapplicationbackgroundandresearchsignificanceofmaneuveringtargettracking.Secondly,weexpoundtheprincipleandprocessoftheIMMmaneuveringtargettrackingalgorithm,andcomparetheadvantagesanddisadvantagesofthisalgorithmwithtraditionalsinglemodeltrackingalgorithm.Then,weintroducethetrackingdatasetandevaluationindex.Furthermore,wegivethecurrentimplementationstatusofthealgorithmandanalyzetheexperimentalresults.Finally,weproposethenextresearchplanandworkarrangement.IMMmaneuveringtargettrackingalgorithmTheIMMalgorithmisafilteringandsmoothingalgorithmfortrackingmulti-modelnonlineardynamicalsystems.ThebasicideaoftheIMMalgorithmistocombinemultipleKalmanfilterstoformahybridfilter.Thehybridfiltercanswitchbetweendifferentmotionmodelstotrackamaneuveringtarget.Thecombinationweightsofdifferentmodelsareupdatedbasedonthelikelihoodofthemeasurementinnovationvector.TheIMMalgorithmcanbedividedintotwostages:predictionandupdate.Inthepredictionstage,thestateestimateandcovarianceofeachmodelarepredictedbasedonthecorrespondingmotionmodel.Intheupdatestage,themeasurementinnovationvectoranditscovariancearecalculatedforeachmodel.Thelikelihoodofthemeasurementinnovationvectoristhenusedtoupdatethecombinationweightsofdifferentmodels.Comparedwithtraditionalsinglemodeltrackingalgorithm,theIMMalgorithmhasthefollowingadvantages:1.TheIMMalgorithmcantracktargetswithdifferentmotionmodels,whichismorerobusttotargetmaneuvering.2.TheIMMalgorithmcanprovidemoreaccuratetrackingestimatesbycombiningmultipleestimatesfromdifferentmodels.However,theIMMalgorithmalsohassomedisadvantages:1.ThecomputationalcomplexityoftheIMMalgorithmishigherthanthatofthetraditionalsinglemodeltrackingalgorithm.2.TheIMMalgorithmrequiresaprioriknowledgeofthetargetmotionmodels,whichmayneedtobeupdatedinreal-timeaccordingtothetargetbehavior.TrackingdatasetandevaluationindexThedatasetusedinthisresearchisthepublicBenchmarkdataset,whichcontains50videosofvarioustypesoftargetsandenvironments.Theevaluationindexusedinthisresearchistheaverageintersection-over-union(IoU)ofthetrackingresultsandgroundtruth.CurrentimplementationstatusandexperimentalresultsTheIMMmaneuveringtargettrackingalgorithmhasbeenimplementedusingMatlab.TheexperimentalresultsshowthattheIMMalgorithmcanachievebettertrackingperformancethanthetraditionalsinglemodeltrackingalgorithminmostcases.However,thecomputationalcomplexityoftheIMMalgorithmishigherthanthatofthetraditionalsinglemodeltrackingalgorithm,whichlimitsitsreal-timetrackingcapability.NextresearchplanandworkarrangementThenextresearchplanistooptimizetheIMMalgorithmtoimproveitstrackingperformanceandreduceitscomputationalcomplexity.Theworkarrangementisasfollows:1.FurtheranalysisoftheadvantagesanddisadvantagesoftheIMMalgorithm,andcomparisonwithothertrackingalgorithms.2.OptimizationoftheIMMalgorithmtoreduceitscomputationalcomplexityandimproveitsreal-timetrackingcapability.3.ConductingmoreexperimentsonthetrackingdatasettoverifytheperformanceoftheoptimizedIMMalgorithm.ConclusionInthisreport,weconductresearchontheIMMmaneuveringtargettrackingalgorithmandgiveamidtermreport.TheIMMalgorithmcantracktargetswithdifferentmotionmodelsandprovidemore

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论