2024届四川省成都市崇庆中学数学九上期末教学质量检测模拟试题含解析_第1页
2024届四川省成都市崇庆中学数学九上期末教学质量检测模拟试题含解析_第2页
2024届四川省成都市崇庆中学数学九上期末教学质量检测模拟试题含解析_第3页
2024届四川省成都市崇庆中学数学九上期末教学质量检测模拟试题含解析_第4页
2024届四川省成都市崇庆中学数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市崇庆中学数学九上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.函数y=(k<0),当x<0时,该函数图像在A.第一象限 B.第二象限 C.第三象限 D.第四象限2.用配方法解方程,下列变形正确的是()A. B. C. D.3.下列四组、、的线段中,不能组成直角三角形的是()A.,, B.,,C.,, D.,,4.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是().A.中国女排一定会夺冠 B.中国女排一定不会夺冠C.中国女排夺冠的可能性比较大 D.中国女排夺冠的可能性比较小5.如果关于的方程没有实数根,那么的最大整数值是()A.-3 B.-2 C.-1 D.06.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH的周长之比为()A.∶3 B.∶1 C.∶ D.1∶7.由若干个相同的小正方体搭成的一个几何体的俯视图和左视图如图所示,则搭成这个几何体的小正方体的个数最多有()A.5个 B.6个 C.7个 D.8个8.用配方法解一元二次方程,可将方程配方为A. B. C. D.9.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE10.下列图形中,不是中心对称图形的是()A. B. C. D.11.如图,菱形ABCD中,∠A=60°,边AB=8,E为边DA的中点,P为边CD上的一点,连接PE、PB,当PE=EB时,线段PE的长为()A.4 B.8 C.4 D.412.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于(

)A. B. C. D.二、填空题(每题4分,共24分)13.若关于的一元二次方程有实数根,则的值可以为________(写出一个即可).14.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.15.在锐角△ABC中,若sinA=,则∠A=_______°16.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为_____.17.如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)18.已知,如图,,,且,则与__________是位似图形,位似比为____________.三、解答题(共78分)19.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.20.(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.21.(8分)感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).22.(10分)快乐的寒假临近啦!小明和小丽计划在寒假期间去镇江旅游.他们选取金山(记为)、焦山(记为)、北固山(记为)这三个景点为游玩目标.如果他们各自在三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),请用“画树状图”或“列表”的方法求他俩都选择金山为第一站的概率.23.(10分)如图,在等边△ABC中,AB=6,AD是高.(1)尺规作图:作△ABC的外接圆⊙O(保留作图痕迹,不写作法)(2)在(1)所作的图中,求线段AD,BD与弧所围成的封闭图形的面积.24.(10分)已知3是一元二次方程x2-2x+a=0的一个根,求a的值和方程的另一个根.25.(12分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.26.计算:2cos30°+(π﹣3.14)0﹣

参考答案一、选择题(每题4分,共48分)1、B【解题分析】首先根据反比例函数的比例系数确定图象的大体位置,然后根据自变量的取值范围确定具体位置【题目详解】∵比例系数k<0,∴其图象位于二、四象限,∵x<0∴反比例函数的图象位于第二象限,故选B.【题目点拨】此题考查反比例函数的性质,根据反比例函数判断象限是解题关键2、D【解题分析】等式两边同时加上一次项系数一半的平方,利用完全平方公式进行整理即可.【题目详解】解:原方程等式两边同时加上一次项系数一半的平方得,,整理后得,,故选择D.【题目点拨】本题考查了配方法的概念.3、B【分析】根据勾股定理的逆定理判断三角形三边是否构成直角三角形,依次计算判断得出结论.【题目详解】A.∵,,∴,A选项不符合题意.B.∵,,∴,B选项符合题意.C.∵,,∴,C选项不符合题意.D.∵,∴,D选项不符合题意.故选:B.【题目点拨】本题考查三角形三边能否构成直角三角形,熟练逆用勾股定理是解题关键.4、C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【题目详解】∵中国女排夺冠的概率是80%,∴中国女排夺冠的可能性比较大故选C.【题目点拨】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义.5、B【分析】先根据根的判别式求出k的取值范围,再从中找到最大整数即可.【题目详解】解得∴k的最大整数值是-2故选:B.【题目点拨】本题主要考查根的判别式,掌握根的判别式与根的个数的关系是解题的关键.6、A【分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出.【题目详解】解:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和内接正六边形的周长比为:4R:6R=∶1.故选:A.【题目点拨】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.7、D【分析】根据所给出的图形可知这个几何体共有3层,3列,先看第一层正方体可能的最多个数,再看第二、三层正方体的可能的最多个数,相加即可.【题目详解】根据主视图和左视图可得:这个几何体有3层,3列,最底层最多有2×2=4个正方体,第二层有2个正方体,第三层有2个正方体则搭成这个几何体的小正方体的个数最多是4+2+2=8个;故选:D.【题目点拨】此题考查了有三视图判断几何体,关键是根据主视图和左视图确定组合几何体的层数及列数.8、A【解题分析】试题解析:故选A.9、D【解题分析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D错误.【题目详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【题目点拨】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.10、A【题目详解】解:根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选A.11、D【分析】由菱形的性质可得AB=AD=8,且∠A=60°,可证△ABD是等边三角形,根据等边三角形中三线合一,求得BE⊥AD,再利用勾股定理求得EB的长,根据PE=EB,即可求解.【题目详解】解:如上图,连接BD∵四边形ABCD是菱形,

∴AB=AD=8,且∠A=60°,

∴△ABD是等边三角形,∵点E是DA的中点,AD=8

∴BE⊥AD,且∠A=60°,AE=

∴在Rt△ABE中,利用勾股定理得:∵PE=EB∴PE=EB=4,

故选:D.【题目点拨】本题考查了菱形的性质,等边三角形判定和性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.12、C【解题分析】试题解析:设正方形网格每个小正方形边长为1,则BC边上的高为2,则,.故本题应选C.二、填空题(每题4分,共24分)13、5(答案不唯一,只有即可)【解题分析】由于方程有实数根,则其根的判别式△≥1,由此可以得到关于c的不等式,解不等式就可以求出c的取值范围.【题目详解】解:一元二次方程化为x2+6x+9-c=1,∵△=36-4(9-c)=4c≥1,解上式得c≥1.故答为5(答案不唯一,只有c≥1即可).【题目点拨】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>1时,一元二次方程有两个不相等的实数根;当∆=1时,一元二次方程有两个相等的实数根;当∆<1时,一元二次方程没有实数根.关键在于求出c的取值范围.14、60°【解题分析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.15、30°【分析】由题意直接利用特殊锐角三角函数值即可求得答案.【题目详解】解:因为sin30°=,且△ABC是锐角三角形,所以∠A=30°.故填:30°.【题目点拨】本题考查特殊锐角三角函数值,熟记特殊锐角三角函数值是解题的关键.16、30°【分析】由旋转的性质可得BC=CD,∠BCD=∠ACE,可得∠B=∠BDC=50°,由三角形内角和定理可求∠BCD=80°=∠ACE,由外角性质可求解.【题目详解】解:∵将△ABC绕点C顺时针旋转,∴BC=CD,∠BCD=∠ACE,∴∠B=∠BDC=50°,∴∠BCD=80°=∠ACE,∵∠ACE=∠B+∠A,∴∠A=80°﹣50°=30°,故答案为:30°.【题目点拨】本题考查了旋转的性质,三角形内角和与三角形外角和性质,解决本题的关键是正确理解题意,熟练掌握旋转的性质,能够由旋转的到相等的角.17、【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【题目详解】解:点,反比例函数经过点B,则点,则,,∴,设,则,,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为.【题目点拨】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.18、7:1【分析】由平行易得△ABC∽△A′B′C′,且两三角形位似,位似比等于OA′:OA.【题目详解】解:∵A′B′∥AB,B′C′∥BC,

∴△ABC∽△A′B′C′,,,∠A′B′O=∠ABO,∠C′B′O=∠CBO,,∠A′B′C′=∠ABC,

∴△ABC∽△A′B′C′,∴△ABC与△A′B′C′是位似图形,

位似比=AB:A′B′=OA:OA′=(1+3):1=7:1.【题目点拨】本题考查了相似图形交于一点的图形的位似图形,位似比等于对应边的比.三、解答题(共78分)19、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【题目详解】(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【题目点拨】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.20、(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解题分析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【题目详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得.∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵BE∥轴,∴点E的坐标是(0,-4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形21、感知:(1)详见解析;(1)m1;拓展:m1,理由详见解析;应用:16,m1.【解题分析】感知:(1)由题意可得CA=CB,∠A=∠ABC=25°,由旋转的性质可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可证△ACB≌△BED;(1)由△ACB≌△BED,可得BC=DE=m,根据三角形面积求法可求△BCD的面积;拓展:作DG⊥CB交CB的延长线于G,可证△ACB≌△BGD,可得BC=DG=m,根据三角形面积求法可求△BCD的面积;应用:过点A作AN⊥BC于N,过点D作DM⊥BC的延长线于点M,由等腰三角形的性质可以得出BN=BC,由条件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面积公式就可以得出结论.【题目详解】感知:证明:(1)∵△ABC是等腰直角三角形,∴CA=CB=m,∠A=∠ABC=25°,由旋转的性质可知,BA=BD,∠ABD=90°,∴∠DBE=25°,在△ACB和△DEB中,,∴△ACB≌△BED(AAS)(1)∵△ACB≌△BED∴DE=BC=m∴S△BCD=BC×ED=m1,故答案为m1,拓展:作DG⊥CB交CB的延长线于G,∵∠ABD=90°,∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,∴∠A=∠DBG,在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),∴BC=DG=m∴S△BCD=BC×DG=m1,应用:作AN⊥BC于N,DM⊥BC交CB的延长线于M,∴∠ANB=∠M=90°,BN=BC=2.∴∠NAB+∠ABN=90°.∵∠ABD=90°,∴∠ABN+∠DBM=90°,∴∠NAB=∠MBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△ANB≌△BMD(AAS),∴BN=DM=BC=2.∴S△BCD=BC•DM=×8×2=16,若BC=m,则BN=DM=BC=m,∴S△BCD=BC•DM=×m×m=m1故答案为16,m1.【题目点拨】本题考查了等腰三角形的性质,全等三角形的判定(AAS),全等三角形的性质,直角三角形的性质,面积计算,熟练掌握这些知识点是本题解题的关键.22、“画树状图”或“列表”见解析;(都选金山为第一站).【分析】画树形图得出所有等可能的情况数,找出小明和小丽都选金山为第一站的情况数,即可求出所求的概率.【题目详解】画树状图得:

∵共有9种等可能的结果,小明和小丽都选金山为第一站的只有1种情况,

∴(都选金山为第一站).【题目点拨】本题考查的是用列表法或树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)见解析;(2)【分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论