2024届江苏省连云港市外国语学校数学九年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届江苏省连云港市外国语学校数学九年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届江苏省连云港市外国语学校数学九年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届江苏省连云港市外国语学校数学九年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届江苏省连云港市外国语学校数学九年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省连云港市外国语学校数学九年级第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图2,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是A.(2,3) B.(3,2) C.(1,3) D.(3,1)2.在中,,垂足为D,则下列比值中不等于的是()A. B. C. D.3.如图,是的外接圆,是的直径,若的半径是,,则()A. B. C. D.4.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A.12 B.15 C.20 D.325.如图,△ABC中∠A=60°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的三角形与△ABC不相似的是()A. B.C. D.6.在平面直角坐标系中,反比例函数的图象经过点(1,3),则的值可以为A. B. C. D.7.下列方程中,是一元二次方程的是().A. B. C. D.8.两个相似多边形的面积比是9∶16,其中小多边形的周长为36cm,则较大多边形的周长为)A.48cm B.54cm C.56cm D.64cm9.如图的几何体由6个相同的小正方体搭成,它的主视图是()A. B. C. D.10.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是()A.把投影灯向银幕的相反方向移动 B.把剪影向投影灯方向移动C.把剪影向银幕方向移动 D.把银幕向投影灯方向移动二、填空题(每小题3分,共24分)11.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是_______.12.将抛物线向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数表达式是_____.13.动点A(m+2,3m+4)在直线l上,点B(b,0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是_____.14.如图,P是反比例函数图象在第二象限上一点,且矩形PEOF的面积是3,则反比例函数的解析式为___________.15.如图,已知菱形的面积为,的长为,则的长为__________.16.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB于点M,若AB=CM=4,则⊙O的半径为_____.17.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.18.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.三、解答题(共66分)19.(10分)已知关于x的一元二次方程mx2+2mx+m﹣4=0;(1)若该方程没有实数根,求m的取值范围.(2)怎样平移函数y=mx2+2mx+m﹣4的图象,可以得到函数y=mx2的图象?20.(6分)某土特产专卖店销售甲种干果,其进价为每千克40元,(物价局规定:出售时不得低于进价,又不得高于进价的1.5倍销售).试销后发现:售价x(元/千克)与日销售量y(千克)存在一次函数关系:y=﹣10x+1.若现在以每千克x元销售时,每天销售甲种干果可盈利w元.(盈利=售价﹣进价).(1)w与x的函数关系式(写出x的取值范围);(2)单价为每千克多少元时,日销售利润最高,最高为多少元;(3)专卖店销售甲种干果想要平均每天获利2240元的情况下,为尽可能让利于顾客,赢得市场,则售价应定为每千克多少元.21.(6分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)将△ABC各顶点的横纵坐标都缩小为原来的得到△A1B1C1,请在图中画出△A1B1C1;(2)求A1C1的长.22.(8分)用适当的方法解下列方程:(1)(2)23.(8分)若关于x的方程kx2﹣2x﹣3=0有实根,求k的取值范围.24.(8分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)已知点D在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;(3)在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.25.(10分)如图,AB和DE是直立在地面上的两根立柱.AB=6m,某一时刻AB在阳光下的投影BC=4m(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为9m,请你计算DE的长.26.(10分)已知反比例函数y=(m为常数)的图象在第一、三象限(1)求m的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD的顶点D,点A、B的坐标分别为(0,3),(-2,0).求出函数解析式.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解答:解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.2、D【分析】利用锐角三角函数定义判断即可.【题目详解】在Rt△ABC中,sinA=,在Rt△ACD中,sinA=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sinA=sin∠BCD=,故选:D.【题目点拨】此题考查了锐角三角函数的定义,熟练掌握锐角三角函数定义是解本题的关键.3、A【分析】连接CD,得∠ACD=90°,由圆周角定理得∠B=∠ADC,进而即可得到答案.【题目详解】连接CD,∵AD是直径,∴∠ACD=90°,∵的半径是,∴AD=3,∵∠B=∠ADC,∴,故选A.【题目点拨】本题主要考查圆周角定理以及正弦三角函数的定义,掌握圆周角定理以及正弦三角函数的定义,是解题的关键.4、D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用Rt△ODM≌Rt△BCN得出BN=OM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【题目详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD=∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入得,k=8×4=32,故选:D.【题目点拨】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.5、A【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【题目详解】A、两三角形的对应边不成比例,故两三角形不相似,故本选项符合题意,B、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意,C、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,D、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,故选:A.【题目点拨】本题考查的是相似三角形的判定,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟知相似三角形的判定定理是解答此题的关键.6、B【分析】把点(1,3)代入中即可求得k值.【题目详解】解:把x=1,y=3代入中得,∴k=3.故选:B.【题目点拨】本题考查了用待定系数法求反比例函数的解析式,能理解把已知点的坐标代入解析式是解题关键.7、A【分析】根据一元二次方程的定义进行判断.【题目详解】A、符合题意;B、是一元一次方程,不符合题意;C、是二元一次方程,不符合题意;D、是分式方程,不符合题意;故选A.【题目点拨】本题考查一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.8、A【解题分析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2.大多边形的周长为2cm.故选A.考点:相似多边形的性质.9、A【分析】根据从正面看得到的视图是主视图,可得答案.【题目详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【题目点拨】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.10、B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【题目详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A错误;当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B正确,C错误;当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D错误.

故选:B.【题目点拨】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.二、填空题(每小题3分,共24分)11、2020【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【题目详解】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),

2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),

∴国内生产总值首次突破100万亿的年份是2020年,

故答案为:2020.【题目点拨】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.12、【分析】先得出抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),然后根据顶点式写出平移后的抛物线解析式.【题目详解】解:抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),所以平移后的抛物线解析式为:.故答案为:.【题目点拨】本题考查的知识点是二次函数图象与几何变化,熟记点的平移规律是解此题的关键.13、【分析】先利用点A求出直线l的解析式,然后求出以B为圆心,半径为1的圆与直线l相切时点B的坐标,即b的值,从而确定以B为圆心,半径为1的圆与直线l有交点时b的取值范围.【题目详解】设直线l的解析式为∵动点A(m+2,3m+4)在直线l上,将点A代入直线解析式中得解得∴直线l解析式为y=3x﹣2如图,直线l与x轴交于点C(,0),交y轴于点A(0,﹣2)∴OA=2,OC=∴AC=若以B为圆心,半径为1的圆与直线l相切于点D,连接BD∴BD⊥AC∴sin∠BCD=sin∠OCA=∴∴∴以B为圆心,半径为1的圆与直线l相切时,B点坐标为或∴以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是故答案为【题目点拨】本题主要考查直线与圆的位置关系,掌握锐角三角函数是解题的关键.14、【分析】根据从反比例函数的图象上任意一点向坐标轴作垂线段,垂线段和坐标轴所围成的矩形的面积是,且保持不变,进行解答即可.【题目详解】由题意得,∵反比例函数图象在第二象限∴∴反比例函数的解析式为y=-.【题目点拨】本题属于基础应用题,只需学生熟练掌握反比例函数k的几何意义,即可完成.15、3【分析】根据菱形面积公式求得.【题目详解】解:【题目点拨】本题主要考查了菱形的对角线互相垂直,菱形的面积公式.16、2.1【分析】连接OA,由垂径定理得出AM=AB=2,设OC=OA=x,则OM=4﹣x,由勾股定理得出AM2+OM2=OA2,得出方程,解方程即可.【题目详解】解:连接OA,如图所示:∵CD是⊙O的直径,CD⊥AB,∴AM=AB=2,∠OMA=90°,设OC=OA=x,则OM=4﹣x,根据勾股定理得:AM2+OM2=OA2,即22+(4﹣x)2=x2,解得:x=2.1;故答案为:2.1.【题目点拨】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.17、(1,4).【解题分析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.18、【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,【题目详解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm

如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED-CD=(12-6)cm

∴当点E从点A滑动到点C时,点D运动的路径长=2×(12-6)=(24-12)cm【题目点拨】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,确定点D的运动轨迹是本题的关键.三、解答题(共66分)19、(1)m<0;(1)向右平移1个单位长度,再向上平移4个单位长度.【分析】(1)根据关于x的一元二次方程mx1+1mx+m﹣4=0没有实数根,可以得到关于m的不等式组,从而可以求得m的取值范围;(1)先将函数y=mx1+1mx+m﹣4化为顶点式,再根据平移的性质可以得到函数y=mx1.【题目详解】(1)∵关于x的一元二次方程mx1+1mx+m﹣4=0没有实数根,∴,解得,m<0,即m的取值范围是m<0;(1)∵函数y=mx1+1mx+m﹣4=m(x+1)1﹣4,∴函数y=mx1+1mx+m﹣4的图象向右平移一个单位长度,在向上平移4个单位长度即可得到函数y=mx1的图象.【题目点拨】本题考查了一元二次方程的问题,掌握根的判别式、一元二次方程的性质以及图象是解题的关键.20、(1)w=﹣10x2+1100x﹣28000,(40≤x≤60);(2)单价为每千克55元时,日销售利润最高,最高为2250元;(3)售价应定为每千克54元.【分析】(1)根据盈利=每千克利润×销量,列函数关系式即可;(2)根据二次函数的性质即可得到结论;(3)根据每天获利2240元列出方程,然后取较小值即可.【题目详解】解:(1)根据题意得,w=(x﹣40)•y=(x﹣40)•(﹣10x+1)=﹣10x2+1100x﹣28000,(40≤x≤60);(2)由(1)可知w=﹣10x2+1100x﹣28000,配方得:w=﹣10(x﹣55)2+2250,∴单价为每千克55元时,日销售利润最高,最高为2250元;(3)由(1)可知w=﹣10x2+1100x﹣28000,∴2240=﹣10x2+1100x﹣28000,解得:x1=54,x2=56,由题意可知x2=56(舍去),∴x=54,答:售价应定为每千克54元.【题目点拨】此题主要考查了二次函数的应用以及一元二次方程的应用,正确得出w与x之间的关系是解题关键.21、(1)作图见解析;(2)【解题分析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【题目详解】(1)如图所示:△A1B1C1,△A2B2C2,都是符合题意的图形;(2)A1C1的长为:.【题目点拨】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.22、(1),;(2),【分析】(1)移项,两边同时加1,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】(1),.(2),,.【题目点拨】本题考查了解一元二次方程,有直接开平方法、配方法、公式法、因式分解法,仔细观察运用合适的方法能简便计算.23、k≥﹣.【分析】分k=0和k≠0分别求解,其中k≠0是利用判别式列出不等式,解之可得.【题目详解】解:若k=0,则方程为﹣2x﹣3=0,解得x=-;若k≠0,则△=(﹣2)2﹣4k×(﹣3)=4+12k≥0,解得:k≥﹣且k≠0;综上,k≥﹣.【题目点拨】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:

①当△>0时,方程有两个不相等的两个实数根;

②当△=0时,方程有两个相等的两个实数根;

③当△<0时,方程无实数根.24、(1)(2)(0,-1)(3)(1,0)(9,0)【解题分析】(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.【题目详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得,解得∴y=x2−2x−3;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论