流体力学英文版复习课件_第1页
流体力学英文版复习课件_第2页
流体力学英文版复习课件_第3页
流体力学英文版复习课件_第4页
流体力学英文版复习课件_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter1.FLUIDPROPERTIES

第一章流体性质Chapter1.FLUIDPROPERTIES

Inphysics,afluidisasubstancethatcontinuallydeformsunderanappliedshearstress,nomatterhowsmallitis.

流体是一种一受到切力作用(不论多么小)就会连续变形的物体。

Definitionofafluid2023/9/26Inphysics,afluidisa2(1)Density(密度)Densityistheratioofthemassoffluidtoitsvolume.

(1.12)

Specificvolume

(比容):volumeoccupiedbyunitmass.

(1.13)

Thespecificvolumeisthereciprocal(倒数)ofdensity.

(kg/m3

)(m3/kg)2023/9/26(1)Density(密度)Densityisthe3(2)SpecificWeight(重度)It’stheweightperunitvolume

(1.14)

inwhich

isthespecificweightoffluid,N/m3;Gistheweightoffluid,N.

(1.14a)

Ortheproductofdensity

andaccelerationofgravityg.

2023/9/26(2)SpecificWeight(重度)It’s4(3)Relativedensityandspecificgravity

Therelativedensity

(相对密度)RDofafluidistheratioofitsdensitytothedensityofagivenreferencematerial.

Thereferencematerialiswaterat4Ci.e.,

ref=

water.=1000kg/m3dimensionlessquantity无量纲

Thespecificgravity

(比重)

SGofafluidis

theratioofitsweighttotheweightofanequalvolumeofwaterat

standardconditions(标准状态).

dimensionlessquantity无量纲

2023/9/26(3)Relativedensityandspeci5(4)Compressibility(压缩性)

Thevolumeoffluidchangesunderdifferentpressure.Asthetemperatureisconstant,themagnitudeofcompressibilityisexpressedbycoefficientofvolumecompressibility

(体积压缩系数)

p

,

arelativevariationrate(相对变化率)

ofvolumeperunitpressure.

(1.15)

Thebulkmodulusofelasticity

(体积弹性模量)Kisthereciprocalofcoefficientofvolumecompressibility

p.(1.16)

(Pa)(Pa

1)2023/9/26(4)Compressibility(压缩性)6Amineraloilincylinderhasavolumeof1000cm3

at0.1MN/m2

andavolumeof998cm3at3.1MN/m2.Whatisitsbulkmodulusofelasticity?Example1.1Solution:2023/9/26Amineraloilincylinde7PredominantCause:

Cohesionisthecauseofviscosityofliquid.Transferof

molecularmomentum

isthecause

ofviscosityofgas.(5)Viscosity

Viscosity

isaninternalpropertyofafluidthatoffersresistancetosheardeformation.Itdescribesafluid'sinternalresistancetoflowandmaybethoughtasameasureoffluidfriction.

Theresistanceofafluidtosheardependsuponitscohesion(内聚力)anditsrateoftransferofmolecularmomentum(分子动量交换).2023/9/26PredominantCause:(5)Viscosi8Newton’slawofviscosityFigure1.5Deformationresultingfromapplicationofconstantshearforce

InFig.1.5,asubstanceisfilledtothespacebetweentwocloselyspacedparallelplates(平行板).Thelowerplateisfixed,theupperplatewithareaA

movewithaconstantvelocityV,aforceFisappliedtotheupperplate.

2023/9/26Newton’slawofviscosityFigur9ExperimentshowsthatFisdirectlyproportionaltoAandtoVandisinverselyproportional

(反比)tothicknessh.

(1.18)

Iftheshearstressis

=F/A,itcanbeexpressedasTheratioV/histheangularvelocityoflineab,oritistherateofangulardeformationofthefluid.2023/9/26ExperimentshowsthatFis10(1.19)

Theangularvelocitymayalsobewrittenasdu/dz,soNewton’slawofviscosityis

Theproportionalityfactor(比例因子)

iscalledthe

viscositycoefficient(黏性系数,黏度).

FluidsmaybeclassifiedasNewtonianornon-Newtonian.

Newtonianfluid:

isconstant.(gasesandthinliquids稀液)Non-Newtonianfluid:

isnotconstant.(thick稠的,long-chainedhydrocarbons长链碳氢化合物)

2023/9/26(1.19)Theangularvelo11DynamicviscosityandKinematicviscosityThedynamicviscosity(动力黏度)isalsocalledabsoluteviscosity(绝对黏度).From(1.19)SIunit:kg/(m

s)orN

s/m2

U.S.customaryunit:dyne

s/cm2(达因

秒/厘米2)cgsunit:

Poise(P,泊).

1P=100cP(厘泊)1P=0.1Pa

s(帕秒)

Thekinematicviscosity

(运动黏度)istheratioofdynamicviscositytodensity.

SI

unit:m2/s

U.S.customary

unit:ft2/s(英尺2/秒)

cgsunit:stokes(St,斯).1cm2/s=1St1mm2/s=1cSt(厘斯)2023/9/26DynamicviscosityandKinemat12Chapter2.FLUIDSTATICS

第二章流体静力学Chapter2.FLUIDSTATICS

第二章BasicequationofhydrostaticsundergravityGravityG(G=mg)istheonlymassforceactingontheliquid

fx=0,fy=0,fz=

gFigure2.4Avesselcontainingliquidatrest

rewritingFrom(2.5)cistheconstantofintegration(积分常数)determinedbytheboundarycondition.integrating(2.7)2023/9/26Basicequationofhydrosta14Forthetwopoints1and2inthestaticfluid

Forthetwopoints0and1

Figure2.4Avesselcontainingliquidatrest

Thepressureatapointinliquidatrestconsistsoftwoparts:the

surfacepressure,andthe

pressurecausedbytheweightofcolumnofliquid.2023/9/26Forthetwopoints1and2For15Physicalmeaning

z——thepositionpotentialenergyperunitweightoffluidtothebaselevel;

p/

g——thepressurepotentialenergy

(压强势能)perunitweightoffluid.Geometricalmeaning

z——thepositionheightorelevationhead(位置水头)

p/

g——thepressurehead(压力水头)perunitweightoffluid

Sumofthepositionhead(位置水头)andpressureheadiscalledthehydrostatichead(静水头),alsoknownasthepiezometrichead(测压管水头).

Theenergyperunitweightoffluidcanbealsoexpressedintermsofthelengthofcolumnofliquid(液柱),andcalledthehead(水头).2023/9/26Physicalmeaningz——th16

localatmosphericpressure(当地大气压)pa

absolutepressure(绝对压强)pabs

gaugepressure(表压,计示压强)=relativepressure

vacuumpressure

(真空压强,真空度)pv

,orsuctionpressure(吸入压强),also

callednegativepressure(负压强)

relativepressure(相对压强)

p

Itisusuallymeasuredintheheightofliquidcolumn,suchasmillimetersofmercury

(mmHg,毫米水银柱),denotedbyhv.RelatedPressures2023/9/26localatmosphericpressure(当17Localatmosphericpressure

p=paCompletevacuumpabs=0AbsolutepressureVacuumpressureGaugepressure

Figure2.6absolutepressure,gaugepressureandvacuumpressure

p

Absolutepressure2

p<pa

1p>pa

O

RelationshipGraph2023/9/26LocalatmosphericpressureCo18

Toavoidanyconfusion,theconventionisadoptedthroughoutthistextthatapressureisingaugepressureunlessspecificallymarked‘abs’,withtheexceptionofagas,whichisabsolutepressureunit.

Attention:

2023/9/26Toavoidanyconfusion,th19Differentialmanometer[mə’nɔmitə](差压计)

usedtomeasurethedifferencesinpressurefortwocontainersortwopointsinacontainer.

Structure:Measurementprinciple:

Figure2.10Differentialmanometer2

AApA1

>

A,

B

hh1

B

BpBh2ρA=ρB=ρ1Fortwosameair,

ρA=ρB=02023/9/26Differentialmanometer[mə’n20EXAMPLE2.1

ApressuremeasurementapparatuswithoutleakageandfrictionbetweenpistonandcylinderwallisshowninFig.2.11.Thepistondiameterisd=35mm,therelativedensityofoilisRDoil=0.92,therelativedensityofmercuryisRDHg=13.6,andtheheightis

h=700mm.Ifthepistonhasaweightof15N,calculatethevalueofheightdifferenceofliquidΔhinthedifferentialmanometer.11pa

hRDoil=0.92RDHg=13.6dhFigure2.11Pressuremeasurementapparatuspistonpa2023/9/26EXAMPLE2.1Apressure21

Thepressureonthepistonundertheweight

Fromtheisobaricsurface1-1theequilibriumequationissolvingfor

h

Solution:

2023/9/26Thepressureonthepis22Chapter3.FLUIDFLOWCONCEPTS&BASICEQUATIONS

第三章

流体流动概念和基本方程组

Chapter3.FLUIDFLOWCONCEPTS

Thespacepervaded(弥漫,充满)theflowingfluidiscalledflowfield(流场).

velocityu,

accelerationa,density

,pressurep,

temperature

T,

viscosityforce

Fv,andsoon.

Motionparameters:2023/9/26Thespacepervaded(弥漫24Steadyflowandunsteadyflow

For

steadyflow

(定常流),motionparametersindependentoftime.

u=u(x,y,z)p=p(x,y,z)

Steadyflowmaybeexpressedas

Themotionparametersaredependentontime,theflowisunsteadyflow

(非定常流).u=u(x,y,z,t)p=p(x,y,z,t)2023/9/26Steadyflowandunsteadyf25

Apathline(迹线,轨迹线)isthetrajectoryofanindividual

fluidparticleinflowfieldduringaperiodoftime.

Streamline(流线)isacontinuousline(manydifferentfluidparticles)drawnwithinfluidflied

atacertaininstant,thedirectionofthevelocityvectorateachpointiscoincidedwith(与…一致)

thedirectionoftangentatthatpointinthe

line.PathlineandstreamlinepathlineStreamline2023/9/26Apathline(迹线,轨迹线)i26Crosssection,flowrateandaveragevelocity1.Flowsection(通流面)Theflowsectionisasectionthateveryareaelementinthesectionisnormaltomini-streamtubeorstreamline.Theflowsectionisacurvedsurface(曲面).Iftheflowsectionisaplanearea,itiscalledacrosssection(横截面).1122IIIu1u2dA1dA2Figure3.5Flowsection2023/9/26Crosssection,flowratea27Theamountoffluidpassingthroughacrosssectioninunitintervaliscalledflowrateordischarge.weightflowratevolumetricflowratemassflowrate

(3.7)Foratotalflow

2.Flowrate(流量)

2023/9/26weightflowratevolumetricflo28

3.Averagevelocity(平均速度)umaxVFigure3.6DistributionofvelocityovercrosssectionThevelocityutakesthemaximumumaxonthepipeaxleandthezeroontheboundaryasshowninFig.3.6.TheaveragevelocityVaccordingtotheequivalencyofflowrateiscalledthesectionaveragevelocity(截面平均速度).Accordingtotheequivalencyofflowrate,VA=∫AudA=Q,therewith,2023/9/263.Averagevelocity(平均速度)uma293.3.2Controlvolume

Controlvolume(cv,控制体)isdefinedasaninvariablyhollowvolumeorframefixedinspaceormovingwithconstantvelocitythroughwhichthefluidflows.

Theboundaryofcontrolvolumeiscalledcontrolsurface

(cs,控制面).

Foracv:1)itsshape,volumeanditscscannotchangewithtime.

2)itisstationaryinthecoordinatesystem.(inthisbook)3)theremaybetheexchangeofmassandenergyonthecs.

2023/9/263.3.2Controlvolume30Systemvs

ControlVolume2023/9/26SystemvsControlVolume2023/8313.4.1Steadyflowcontinuityequationof1DministreamtubedA1u1dA2u2A1A2Figure3.8

One-dimensionalstreamtubeThenetmassinflow

dM=(

lu1dA1

2u2dA2)dtForcompressiblesteadyflowdM=0

lu1dA1=

2u2dA2Ifincompressible,ρl=ρ2=ρ

u1dA1=u2dA2Theformulaisthecontinuityequationforincompressiblefluid,steadyflowalongwithmini-streamtube.(3.23)2023/9/263.4.1Steadyflowcontinu323.4.2Totalflowcontinuityequationfor1Dsteadyflow

lmV1A1=2mV2A2

(3.24)Forincompressiblefluidflow,ρisaconstant.

Q1=Q2

orV1A1=V2A2dA1u1dA2u2A1A2Figure3.8One-dimensionalstreamtubeMakingintegralsatbothsidesofEq.(3.23)IntegratingitaveragedensityaveragevelocityThetotalflowcontinuityequationfortheincompressiblefluidinsteadyflow.2023/9/263.4.2Totalflowcontinui333.5.2Bernoulli’sequation

Eq.(3.8)isusedforidealfluidflowsalongastreamlineinsteady.Bernoulli’sequation

canbeobtainedwith

anintegralalongastreamline:(m2/s2)(3.29)

Thisisanenergyequationperunitmass.Ithasthedimensions(L/T)2becausem

N/kg=(m

kg

m/s2)/kg=m2/s2.

Themeanings

u2/2——thekineticenergyperunitmass(mu2/2)/m.

p/

——thepressureenergyperunitmass.gz——thepotentialenergyperunitmass.Eq.(3.29)showsthatthetotalmechanicalenergyperunitmassoffluidremainsconstantatanypositionalongtheflowpath.2023/9/263.5.2Bernoulli’sequati34

TheBernoulli’sequationperunitvolumeis(N/m2)(3.30)

Becausethedimensionof

u2/2isthesameasthatofpressure,itiscalleddynamicpressure(动压强).

TheBernoulli’sequationperunitweightis(m

N/N,or,m)(3.31)

Forarbitrarytwopoints1and2alongastreamline,

(3.32)

2023/9/26TheBernoulli’sequation35

Themechanicalenergyperunitweightoverthesectioningraduallyvariedflowis

Lethwbetheenergylossesperunitweightoffluidfrom1-1to2-2,theBernoulli’sequationforatotalflowis

Leths

betheshaftworkperunitweightoffluid,theBernoulli’sequationforarealsystemis

(3.45)(3.44)

3.7.2TheBernoulli’sequationforthereal-fluidtotalflow2023/9/26Themechanicalenergype36011dhe0Figure3.20Pumpingwater

Acentrifugalwaterpump(离心式水泵)withasuctionpipe(吸水管)isshowninFig.3.20.PumpoutputisQ=0.03m3/s,thediameterofsuctionpiped=150mm,vacuumpressurethatthepumpcanreachispv/(

g)=6.8mH2O,andallheadlossesinthesuctionpipe

hw=1mH2O.Determinetheutmostelevation(最大提升)hefromthepumpshafttothewatersurfaceonthepond.EXAMPLE3.62023/9/26011dhe0Figure3.20Pumpingwat37Solution

1)twocrosssectionsandthedatumplaneareselected.

Thesectionsshouldbeonthegraduallyvariedflow,thetwocrosssectionshereare:1)thewatersurface0-0onthepond,2)thesection1-1ontheinletofpump.Meanwhile,thesection0-0istakenasthedatumplane,

z0=0.2023/9/26Solution1)twocrosssec382)theparametersintheequationaredetermined.

Thepressurep0andp1areexpressedinrelativepressure(gaugepressure).,andSo,V0=0.Let=1

hw0-1=1mH2O

,and,and2023/9/262)theparametersintheequat393)calculationfortheunknownparameteriscarriedout.

BysubstitutingV0=0,p0=0,z0=0,p1=

pv,z1=he,α1=1andV1=1.7intotheBernoulli’sequation,i.e.,

Thevaluesofpv/(

g)

and

V1

aresubstitutedintoaboveformulaanditgivesnamely,2023/9/263)calculationfortheunknown40Intheactualflowthevelocityoveraplanecrosssection(横截平面)isnotuniformorIftheun-uniforminvelocityoverthesectionistakenintoaccount,Eq.(3.48)mayberewrittenas

is

momentumcorrectionfactor

(动量修正系数).

=4/3inlaminarflowforastraightroundtube.

=

1.02~1.05inturbulentflow

anditcouldbetakenas1.

oror

(3.49)

(3.50)

3.8THELINEAR-MOMENTUMEQUATION

2023/9/26Intheactualflowthevelocit41Chapter4.FLUID

RESISTANCE

4.流体阻力Chapter4.FLUIDRESISTANCE

4hw

—headlosses(水头损失)

comprisesoffrictionlossesandminorlosses.1.Frictionloss(沿程损失,摩擦水头损失)hl

Intheflowthroughastraighttubewithconstantcrosssection,theenergylossincreaseslinearlyinthedirectionofflowandthelossiscalledfrictionloss.

2.Minorloss(次要损失)orLocalloss(局部损失)hmWhentheshapeofflowpathchanges,suchassectionenlargementandsoon,itwillgiverisetoachangeinthedistributionofvelocityfortheflow.Thechangeresultsinenergyloss,whichiscalledminorlossorlocalloss.4.1REYNOLDSNUMBER2023/9/26hw—headlosses(水头损失)compris43Reynoldsnumber

Reisusedtodescribethecharacteristicofflow.2023/9/26ReynoldsnumberReisusedto44Thedischarge(流量)passingthroughafixedcrosssectionis4.2LAMINARBETWEENPARALLELPLATES

2023/9/26Thedischarge(流量)passingth45Itcanbewrittenas

Supposethediameterofcirculartubeisd.Substitutingknownconditionsabovetothedischargeequation,thedischargeofcirculartubeisHagen-Poiseuille(哈根-泊肃叶)equation.

Sotheaveragevelocityoflaminarflowinthecirculartubeis4.3LAMINARFLOWTHROUGHCIRCULARTUBE2023/9/26ItcanbewrittenasSu46

Fluidflowsina3-mm-IDhorizontaltube.Findthepressuredroppermeter.μ=60cP,RD=0.83,atRe=200.

Example4.2Solution:2023/9/26Fluidflowsina3-mm-ID47IntheFig.4.7,

pisfrictionlossoflaminarflowinthetubebetweensections1-1and2-2.Letthecoefficientoffrictionloss(沿程摩擦系数,沿程损失系数)obtainsDarcy-Weisbch(达西-韦斯巴赫)Equation4.3.3Frictionallossforlaminarflowinhorizontalcirculartube

Itisusedtocalculatethefrictionalpressuredropforlaminarfloworturbulentflowinhorizontalcirculartube.Fortheconvenienceofapplication,itcanbewrittenfrictionloss:2023/9/26IntheFig.4.7,pisfrictio48

Thelossesjustoccurlocally,whichcalledasminorenergylosses(局部能量损失)or

minorpressurelosses,denotedby

pm.Itusuallyisexpressedasthefollowingequation.4.6.5Minorresistance

:theminorlosscoefficientorlocallosscoefficient,V:thevelocityoverthecrosssection,

:themassdensity2023/9/26Thelossesjustoccurl49

Itisthatthefrictionlossistheonlyfactorforenergylossesinfluidflow.Inthesimplepipeproblem,assumingthatthefluidisincompressible,itinvolvessixparameters,Q,L,D,hw,

,

.Ingeneral,thelengthofpipe,L,kinematicviscosityoffluid,

,andabsoluteroughnessofpipe,

,maybedeterminedalready.

So,simplepipeproblemcanbeclassifiedintothreetypes:(1)solutionforpressuredrophw

withQ,L,D;(2)solutionfordischargeQwithL,D,hw;(3)solutionfordiameterDwithQ,L,hw.Table4.5Simplepipeproblem“Simplepipeproblem”2023/9/26Itisthatthefriction50m

isthenumberofthefrictionalresistance,nisthenumberoftheminorresistance,thesubscriptsiand

jexpresstheithandthejthsegmentofpipeline.ThemajorworkinsimplepipeproblemistosolvehW.2023/9/26misthenumberofthefrictio51EXAMPLE4.6AhorizontalpipelineisusedtosupplylandwithwaterasshowninFig.4.22.Thecomponentpartsofpipelineareasfollowing:threepipesoflength30m,12m,and60m;twostandardelbowsAandB;andaglobevalve(fullyopen)C.IftheelevationisH=10mandtheinsidediameterofcleancastironpipeis150mm,determine:1)thedischargeinthepipe;2)theheadlosswhenQ=60L/s.Figure4.22Horizontalpipelineusedtoirrigateacropland2023/9/26EXAMPLE4.6Ahoriz52SolutionTheentrancelosscoefficientis0.5,losscoefficientofelbow0.9,andlosscoefficientoftheglobevalve10.Bernoulli’sequationisappliedbetweensection1-1andsection2-2,includingallthelosses,2023/9/26SolutionTheentrancel53Chapter5.APPLICATIONSOFFLUIDMECHANICS

第五章流体力学应用Chapter5.APPLICATIONSOFFLU5.1Orifices

5.1孔口2023/9/265.1Orifices

5.1孔口2023/8/155Orificedischargeisthehydraulicphenomenonthatfluidflowsthroughanorificeinwalloftank.orificeedge(l/d)

thin-walledorificethick-walledorificeccldFigure5.1Thin-walledorificeccldFigure5.2Thick-walledorificeOrificeclassification(孔口分类)(l/d<0.5)(2<l/d<4)2023/9/26Orificedischargeisthe56Orificedischargeisthehydraulicphenomenonthatfluidflowsthroughanorificeinwalloftank.dischargeconditionOrificeclassification(孔口分类)freedischarge:fluidflowsintoairdirectlysubmergeddischarge:fluidisdischargedintoanother

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论