版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter1.FLUIDPROPERTIES
第一章流体性质Chapter1.FLUIDPROPERTIES
Inphysics,afluidisasubstancethatcontinuallydeformsunderanappliedshearstress,nomatterhowsmallitis.
流体是一种一受到切力作用(不论多么小)就会连续变形的物体。
Definitionofafluid2023/9/26Inphysics,afluidisa2(1)Density(密度)Densityistheratioofthemassoffluidtoitsvolume.
(1.12)
Specificvolume
(比容):volumeoccupiedbyunitmass.
(1.13)
Thespecificvolumeisthereciprocal(倒数)ofdensity.
(kg/m3
)(m3/kg)2023/9/26(1)Density(密度)Densityisthe3(2)SpecificWeight(重度)It’stheweightperunitvolume
(1.14)
inwhich
isthespecificweightoffluid,N/m3;Gistheweightoffluid,N.
(1.14a)
Ortheproductofdensity
andaccelerationofgravityg.
2023/9/26(2)SpecificWeight(重度)It’s4(3)Relativedensityandspecificgravity
Therelativedensity
(相对密度)RDofafluidistheratioofitsdensitytothedensityofagivenreferencematerial.
Thereferencematerialiswaterat4Ci.e.,
ref=
water.=1000kg/m3dimensionlessquantity无量纲
Thespecificgravity
(比重)
SGofafluidis
theratioofitsweighttotheweightofanequalvolumeofwaterat
standardconditions(标准状态).
dimensionlessquantity无量纲
2023/9/26(3)Relativedensityandspeci5(4)Compressibility(压缩性)
Thevolumeoffluidchangesunderdifferentpressure.Asthetemperatureisconstant,themagnitudeofcompressibilityisexpressedbycoefficientofvolumecompressibility
(体积压缩系数)
p
,
arelativevariationrate(相对变化率)
ofvolumeperunitpressure.
(1.15)
Thebulkmodulusofelasticity
(体积弹性模量)Kisthereciprocalofcoefficientofvolumecompressibility
p.(1.16)
(Pa)(Pa
1)2023/9/26(4)Compressibility(压缩性)6Amineraloilincylinderhasavolumeof1000cm3
at0.1MN/m2
andavolumeof998cm3at3.1MN/m2.Whatisitsbulkmodulusofelasticity?Example1.1Solution:2023/9/26Amineraloilincylinde7PredominantCause:
Cohesionisthecauseofviscosityofliquid.Transferof
molecularmomentum
isthecause
ofviscosityofgas.(5)Viscosity
Viscosity
isaninternalpropertyofafluidthatoffersresistancetosheardeformation.Itdescribesafluid'sinternalresistancetoflowandmaybethoughtasameasureoffluidfriction.
Theresistanceofafluidtosheardependsuponitscohesion(内聚力)anditsrateoftransferofmolecularmomentum(分子动量交换).2023/9/26PredominantCause:(5)Viscosi8Newton’slawofviscosityFigure1.5Deformationresultingfromapplicationofconstantshearforce
InFig.1.5,asubstanceisfilledtothespacebetweentwocloselyspacedparallelplates(平行板).Thelowerplateisfixed,theupperplatewithareaA
movewithaconstantvelocityV,aforceFisappliedtotheupperplate.
2023/9/26Newton’slawofviscosityFigur9ExperimentshowsthatFisdirectlyproportionaltoAandtoVandisinverselyproportional
(反比)tothicknessh.
(1.18)
Iftheshearstressis
=F/A,itcanbeexpressedasTheratioV/histheangularvelocityoflineab,oritistherateofangulardeformationofthefluid.2023/9/26ExperimentshowsthatFis10(1.19)
Theangularvelocitymayalsobewrittenasdu/dz,soNewton’slawofviscosityis
Theproportionalityfactor(比例因子)
iscalledthe
viscositycoefficient(黏性系数,黏度).
FluidsmaybeclassifiedasNewtonianornon-Newtonian.
Newtonianfluid:
isconstant.(gasesandthinliquids稀液)Non-Newtonianfluid:
isnotconstant.(thick稠的,long-chainedhydrocarbons长链碳氢化合物)
2023/9/26(1.19)Theangularvelo11DynamicviscosityandKinematicviscosityThedynamicviscosity(动力黏度)isalsocalledabsoluteviscosity(绝对黏度).From(1.19)SIunit:kg/(m
s)orN
s/m2
U.S.customaryunit:dyne
s/cm2(达因
秒/厘米2)cgsunit:
Poise(P,泊).
1P=100cP(厘泊)1P=0.1Pa
s(帕秒)
Thekinematicviscosity
(运动黏度)istheratioofdynamicviscositytodensity.
SI
unit:m2/s
U.S.customary
unit:ft2/s(英尺2/秒)
cgsunit:stokes(St,斯).1cm2/s=1St1mm2/s=1cSt(厘斯)2023/9/26DynamicviscosityandKinemat12Chapter2.FLUIDSTATICS
第二章流体静力学Chapter2.FLUIDSTATICS
第二章BasicequationofhydrostaticsundergravityGravityG(G=mg)istheonlymassforceactingontheliquid
fx=0,fy=0,fz=
gFigure2.4Avesselcontainingliquidatrest
rewritingFrom(2.5)cistheconstantofintegration(积分常数)determinedbytheboundarycondition.integrating(2.7)2023/9/26Basicequationofhydrosta14Forthetwopoints1and2inthestaticfluid
Forthetwopoints0and1
Figure2.4Avesselcontainingliquidatrest
Thepressureatapointinliquidatrestconsistsoftwoparts:the
surfacepressure,andthe
pressurecausedbytheweightofcolumnofliquid.2023/9/26Forthetwopoints1and2For15Physicalmeaning
z——thepositionpotentialenergyperunitweightoffluidtothebaselevel;
p/
g——thepressurepotentialenergy
(压强势能)perunitweightoffluid.Geometricalmeaning
z——thepositionheightorelevationhead(位置水头)
p/
g——thepressurehead(压力水头)perunitweightoffluid
Sumofthepositionhead(位置水头)andpressureheadiscalledthehydrostatichead(静水头),alsoknownasthepiezometrichead(测压管水头).
Theenergyperunitweightoffluidcanbealsoexpressedintermsofthelengthofcolumnofliquid(液柱),andcalledthehead(水头).2023/9/26Physicalmeaningz——th16
localatmosphericpressure(当地大气压)pa
absolutepressure(绝对压强)pabs
gaugepressure(表压,计示压强)=relativepressure
vacuumpressure
(真空压强,真空度)pv
,orsuctionpressure(吸入压强),also
callednegativepressure(负压强)
relativepressure(相对压强)
p
Itisusuallymeasuredintheheightofliquidcolumn,suchasmillimetersofmercury
(mmHg,毫米水银柱),denotedbyhv.RelatedPressures2023/9/26localatmosphericpressure(当17Localatmosphericpressure
p=paCompletevacuumpabs=0AbsolutepressureVacuumpressureGaugepressure
Figure2.6absolutepressure,gaugepressureandvacuumpressure
p
Absolutepressure2
p<pa
1p>pa
O
RelationshipGraph2023/9/26LocalatmosphericpressureCo18
Toavoidanyconfusion,theconventionisadoptedthroughoutthistextthatapressureisingaugepressureunlessspecificallymarked‘abs’,withtheexceptionofagas,whichisabsolutepressureunit.
Attention:
2023/9/26Toavoidanyconfusion,th19Differentialmanometer[mə’nɔmitə](差压计)
usedtomeasurethedifferencesinpressurefortwocontainersortwopointsinacontainer.
Structure:Measurementprinciple:
Figure2.10Differentialmanometer2
AApA1
>
A,
B
hh1
B
BpBh2ρA=ρB=ρ1Fortwosameair,
ρA=ρB=02023/9/26Differentialmanometer[mə’n20EXAMPLE2.1
ApressuremeasurementapparatuswithoutleakageandfrictionbetweenpistonandcylinderwallisshowninFig.2.11.Thepistondiameterisd=35mm,therelativedensityofoilisRDoil=0.92,therelativedensityofmercuryisRDHg=13.6,andtheheightis
h=700mm.Ifthepistonhasaweightof15N,calculatethevalueofheightdifferenceofliquidΔhinthedifferentialmanometer.11pa
hRDoil=0.92RDHg=13.6dhFigure2.11Pressuremeasurementapparatuspistonpa2023/9/26EXAMPLE2.1Apressure21
Thepressureonthepistonundertheweight
Fromtheisobaricsurface1-1theequilibriumequationissolvingfor
h
Solution:
2023/9/26Thepressureonthepis22Chapter3.FLUIDFLOWCONCEPTS&BASICEQUATIONS
第三章
流体流动概念和基本方程组
Chapter3.FLUIDFLOWCONCEPTS
Thespacepervaded(弥漫,充满)theflowingfluidiscalledflowfield(流场).
velocityu,
accelerationa,density
,pressurep,
temperature
T,
viscosityforce
Fv,andsoon.
Motionparameters:2023/9/26Thespacepervaded(弥漫24Steadyflowandunsteadyflow
For
steadyflow
(定常流),motionparametersindependentoftime.
u=u(x,y,z)p=p(x,y,z)
Steadyflowmaybeexpressedas
Themotionparametersaredependentontime,theflowisunsteadyflow
(非定常流).u=u(x,y,z,t)p=p(x,y,z,t)2023/9/26Steadyflowandunsteadyf25
Apathline(迹线,轨迹线)isthetrajectoryofanindividual
fluidparticleinflowfieldduringaperiodoftime.
Streamline(流线)isacontinuousline(manydifferentfluidparticles)drawnwithinfluidflied
atacertaininstant,thedirectionofthevelocityvectorateachpointiscoincidedwith(与…一致)
thedirectionoftangentatthatpointinthe
line.PathlineandstreamlinepathlineStreamline2023/9/26Apathline(迹线,轨迹线)i26Crosssection,flowrateandaveragevelocity1.Flowsection(通流面)Theflowsectionisasectionthateveryareaelementinthesectionisnormaltomini-streamtubeorstreamline.Theflowsectionisacurvedsurface(曲面).Iftheflowsectionisaplanearea,itiscalledacrosssection(横截面).1122IIIu1u2dA1dA2Figure3.5Flowsection2023/9/26Crosssection,flowratea27Theamountoffluidpassingthroughacrosssectioninunitintervaliscalledflowrateordischarge.weightflowratevolumetricflowratemassflowrate
(3.7)Foratotalflow
2.Flowrate(流量)
2023/9/26weightflowratevolumetricflo28
3.Averagevelocity(平均速度)umaxVFigure3.6DistributionofvelocityovercrosssectionThevelocityutakesthemaximumumaxonthepipeaxleandthezeroontheboundaryasshowninFig.3.6.TheaveragevelocityVaccordingtotheequivalencyofflowrateiscalledthesectionaveragevelocity(截面平均速度).Accordingtotheequivalencyofflowrate,VA=∫AudA=Q,therewith,2023/9/263.Averagevelocity(平均速度)uma293.3.2Controlvolume
Controlvolume(cv,控制体)isdefinedasaninvariablyhollowvolumeorframefixedinspaceormovingwithconstantvelocitythroughwhichthefluidflows.
Theboundaryofcontrolvolumeiscalledcontrolsurface
(cs,控制面).
Foracv:1)itsshape,volumeanditscscannotchangewithtime.
2)itisstationaryinthecoordinatesystem.(inthisbook)3)theremaybetheexchangeofmassandenergyonthecs.
2023/9/263.3.2Controlvolume30Systemvs
ControlVolume2023/9/26SystemvsControlVolume2023/8313.4.1Steadyflowcontinuityequationof1DministreamtubedA1u1dA2u2A1A2Figure3.8
One-dimensionalstreamtubeThenetmassinflow
dM=(
lu1dA1
2u2dA2)dtForcompressiblesteadyflowdM=0
lu1dA1=
2u2dA2Ifincompressible,ρl=ρ2=ρ
u1dA1=u2dA2Theformulaisthecontinuityequationforincompressiblefluid,steadyflowalongwithmini-streamtube.(3.23)2023/9/263.4.1Steadyflowcontinu323.4.2Totalflowcontinuityequationfor1Dsteadyflow
lmV1A1=2mV2A2
(3.24)Forincompressiblefluidflow,ρisaconstant.
Q1=Q2
orV1A1=V2A2dA1u1dA2u2A1A2Figure3.8One-dimensionalstreamtubeMakingintegralsatbothsidesofEq.(3.23)IntegratingitaveragedensityaveragevelocityThetotalflowcontinuityequationfortheincompressiblefluidinsteadyflow.2023/9/263.4.2Totalflowcontinui333.5.2Bernoulli’sequation
Eq.(3.8)isusedforidealfluidflowsalongastreamlineinsteady.Bernoulli’sequation
canbeobtainedwith
anintegralalongastreamline:(m2/s2)(3.29)
Thisisanenergyequationperunitmass.Ithasthedimensions(L/T)2becausem
N/kg=(m
kg
m/s2)/kg=m2/s2.
Themeanings
u2/2——thekineticenergyperunitmass(mu2/2)/m.
p/
——thepressureenergyperunitmass.gz——thepotentialenergyperunitmass.Eq.(3.29)showsthatthetotalmechanicalenergyperunitmassoffluidremainsconstantatanypositionalongtheflowpath.2023/9/263.5.2Bernoulli’sequati34
TheBernoulli’sequationperunitvolumeis(N/m2)(3.30)
Becausethedimensionof
u2/2isthesameasthatofpressure,itiscalleddynamicpressure(动压强).
TheBernoulli’sequationperunitweightis(m
N/N,or,m)(3.31)
Forarbitrarytwopoints1and2alongastreamline,
(3.32)
2023/9/26TheBernoulli’sequation35
Themechanicalenergyperunitweightoverthesectioningraduallyvariedflowis
Lethwbetheenergylossesperunitweightoffluidfrom1-1to2-2,theBernoulli’sequationforatotalflowis
Leths
betheshaftworkperunitweightoffluid,theBernoulli’sequationforarealsystemis
(3.45)(3.44)
3.7.2TheBernoulli’sequationforthereal-fluidtotalflow2023/9/26Themechanicalenergype36011dhe0Figure3.20Pumpingwater
Acentrifugalwaterpump(离心式水泵)withasuctionpipe(吸水管)isshowninFig.3.20.PumpoutputisQ=0.03m3/s,thediameterofsuctionpiped=150mm,vacuumpressurethatthepumpcanreachispv/(
g)=6.8mH2O,andallheadlossesinthesuctionpipe
hw=1mH2O.Determinetheutmostelevation(最大提升)hefromthepumpshafttothewatersurfaceonthepond.EXAMPLE3.62023/9/26011dhe0Figure3.20Pumpingwat37Solution
1)twocrosssectionsandthedatumplaneareselected.
Thesectionsshouldbeonthegraduallyvariedflow,thetwocrosssectionshereare:1)thewatersurface0-0onthepond,2)thesection1-1ontheinletofpump.Meanwhile,thesection0-0istakenasthedatumplane,
z0=0.2023/9/26Solution1)twocrosssec382)theparametersintheequationaredetermined.
Thepressurep0andp1areexpressedinrelativepressure(gaugepressure).,andSo,V0=0.Let=1
hw0-1=1mH2O
,and,and2023/9/262)theparametersintheequat393)calculationfortheunknownparameteriscarriedout.
BysubstitutingV0=0,p0=0,z0=0,p1=
pv,z1=he,α1=1andV1=1.7intotheBernoulli’sequation,i.e.,
Thevaluesofpv/(
g)
and
V1
aresubstitutedintoaboveformulaanditgivesnamely,2023/9/263)calculationfortheunknown40Intheactualflowthevelocityoveraplanecrosssection(横截平面)isnotuniformorIftheun-uniforminvelocityoverthesectionistakenintoaccount,Eq.(3.48)mayberewrittenas
is
momentumcorrectionfactor
(动量修正系数).
=4/3inlaminarflowforastraightroundtube.
=
1.02~1.05inturbulentflow
anditcouldbetakenas1.
oror
(3.49)
(3.50)
3.8THELINEAR-MOMENTUMEQUATION
2023/9/26Intheactualflowthevelocit41Chapter4.FLUID
RESISTANCE
4.流体阻力Chapter4.FLUIDRESISTANCE
4hw
—headlosses(水头损失)
comprisesoffrictionlossesandminorlosses.1.Frictionloss(沿程损失,摩擦水头损失)hl
Intheflowthroughastraighttubewithconstantcrosssection,theenergylossincreaseslinearlyinthedirectionofflowandthelossiscalledfrictionloss.
2.Minorloss(次要损失)orLocalloss(局部损失)hmWhentheshapeofflowpathchanges,suchassectionenlargementandsoon,itwillgiverisetoachangeinthedistributionofvelocityfortheflow.Thechangeresultsinenergyloss,whichiscalledminorlossorlocalloss.4.1REYNOLDSNUMBER2023/9/26hw—headlosses(水头损失)compris43Reynoldsnumber
Reisusedtodescribethecharacteristicofflow.2023/9/26ReynoldsnumberReisusedto44Thedischarge(流量)passingthroughafixedcrosssectionis4.2LAMINARBETWEENPARALLELPLATES
2023/9/26Thedischarge(流量)passingth45Itcanbewrittenas
Supposethediameterofcirculartubeisd.Substitutingknownconditionsabovetothedischargeequation,thedischargeofcirculartubeisHagen-Poiseuille(哈根-泊肃叶)equation.
Sotheaveragevelocityoflaminarflowinthecirculartubeis4.3LAMINARFLOWTHROUGHCIRCULARTUBE2023/9/26ItcanbewrittenasSu46
Fluidflowsina3-mm-IDhorizontaltube.Findthepressuredroppermeter.μ=60cP,RD=0.83,atRe=200.
Example4.2Solution:2023/9/26Fluidflowsina3-mm-ID47IntheFig.4.7,
pisfrictionlossoflaminarflowinthetubebetweensections1-1and2-2.Letthecoefficientoffrictionloss(沿程摩擦系数,沿程损失系数)obtainsDarcy-Weisbch(达西-韦斯巴赫)Equation4.3.3Frictionallossforlaminarflowinhorizontalcirculartube
Itisusedtocalculatethefrictionalpressuredropforlaminarfloworturbulentflowinhorizontalcirculartube.Fortheconvenienceofapplication,itcanbewrittenfrictionloss:2023/9/26IntheFig.4.7,pisfrictio48
Thelossesjustoccurlocally,whichcalledasminorenergylosses(局部能量损失)or
minorpressurelosses,denotedby
pm.Itusuallyisexpressedasthefollowingequation.4.6.5Minorresistance
:theminorlosscoefficientorlocallosscoefficient,V:thevelocityoverthecrosssection,
:themassdensity2023/9/26Thelossesjustoccurl49
Itisthatthefrictionlossistheonlyfactorforenergylossesinfluidflow.Inthesimplepipeproblem,assumingthatthefluidisincompressible,itinvolvessixparameters,Q,L,D,hw,
,
.Ingeneral,thelengthofpipe,L,kinematicviscosityoffluid,
,andabsoluteroughnessofpipe,
,maybedeterminedalready.
So,simplepipeproblemcanbeclassifiedintothreetypes:(1)solutionforpressuredrophw
withQ,L,D;(2)solutionfordischargeQwithL,D,hw;(3)solutionfordiameterDwithQ,L,hw.Table4.5Simplepipeproblem“Simplepipeproblem”2023/9/26Itisthatthefriction50m
isthenumberofthefrictionalresistance,nisthenumberoftheminorresistance,thesubscriptsiand
jexpresstheithandthejthsegmentofpipeline.ThemajorworkinsimplepipeproblemistosolvehW.2023/9/26misthenumberofthefrictio51EXAMPLE4.6AhorizontalpipelineisusedtosupplylandwithwaterasshowninFig.4.22.Thecomponentpartsofpipelineareasfollowing:threepipesoflength30m,12m,and60m;twostandardelbowsAandB;andaglobevalve(fullyopen)C.IftheelevationisH=10mandtheinsidediameterofcleancastironpipeis150mm,determine:1)thedischargeinthepipe;2)theheadlosswhenQ=60L/s.Figure4.22Horizontalpipelineusedtoirrigateacropland2023/9/26EXAMPLE4.6Ahoriz52SolutionTheentrancelosscoefficientis0.5,losscoefficientofelbow0.9,andlosscoefficientoftheglobevalve10.Bernoulli’sequationisappliedbetweensection1-1andsection2-2,includingallthelosses,2023/9/26SolutionTheentrancel53Chapter5.APPLICATIONSOFFLUIDMECHANICS
第五章流体力学应用Chapter5.APPLICATIONSOFFLU5.1Orifices
5.1孔口2023/9/265.1Orifices
5.1孔口2023/8/155Orificedischargeisthehydraulicphenomenonthatfluidflowsthroughanorificeinwalloftank.orificeedge(l/d)
thin-walledorificethick-walledorificeccldFigure5.1Thin-walledorificeccldFigure5.2Thick-walledorificeOrificeclassification(孔口分类)(l/d<0.5)(2<l/d<4)2023/9/26Orificedischargeisthe56Orificedischargeisthehydraulicphenomenonthatfluidflowsthroughanorificeinwalloftank.dischargeconditionOrificeclassification(孔口分类)freedischarge:fluidflowsintoairdirectlysubmergeddischarge:fluidisdischargedintoanother
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湘南幼儿师范高等专科学校单招职业适应性测试模拟试题及答案解析
- 2026年浙江工贸职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年苏州农业职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年湛江幼儿师范专科学校单招职业适应性考试模拟试题及答案解析
- 2026年苏州市职业大学单招职业适应性测试模拟试题及答案解析
- 老年人慢性病综合管理策略与护理
- 急诊科犬咬伤护理
- 2026年教师资格证(生物学科知识与教学能力 初级中学)自测试题及答案
- 2025上海市第一人民医院招聘1人备考考试题库及答案解析
- 2025河南漯河医学高等专科学校第三附属医院(漯河市康复医院)人才引进10人备考笔试试题及答案解析
- 2025年公需课新质生产力试题及答案
- 2025年70岁老年人换新本驾驶证需考三力测试题及答案
- 城建档案规范化管理流程与操作指南
- 遗体火化师招聘考核试卷及答案
- 2024-2025学年山东省聊城市临清市七年级(上)期末数学试卷(含答案)
- 苏州大学《高等数学A 2》2023 - 2024学年期末试卷
- 2025年政府采购评标专家库测评真题5套含答案
- 电解铝安全环保知识培训课件
- 线性代数期末考试试题及答案
- 蒸汽管道工程分部分项划分方案
- 2025广东广州市南沙区榄核镇招聘幼儿教师笔试备考试题及答案解析
评论
0/150
提交评论