重庆巴蜀常春藤2024届数学九上期末调研模拟试题含解析_第1页
重庆巴蜀常春藤2024届数学九上期末调研模拟试题含解析_第2页
重庆巴蜀常春藤2024届数学九上期末调研模拟试题含解析_第3页
重庆巴蜀常春藤2024届数学九上期末调研模拟试题含解析_第4页
重庆巴蜀常春藤2024届数学九上期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆巴蜀常春藤2024届数学九上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是()A.y=﹣(x﹣2)2+4 B.y=﹣(x﹣2)2﹣2C.y=﹣(x+2)2+4 D.y=﹣(x+2)2﹣22.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4 B.﹣4 C.2 D.±23.sin30°的值为()A. B. C. D.4.抛物线y=2(x-1)2-6的对称轴是().A.x=-6 B.x=-1 C.x= D.x=15.已知二次函数y=ax2+bx+c的图象如图所示,下列结i论:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A.65π B.60π C.75π D.70π7.下列银行标志图片中,既是轴对称图形又是中心对称图形的是()A. B. C. D.8.下列四个物体的俯视图与右边给出视图一致的是()A. B. C. D.9.如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为()A.40cm2 B.20cm2C.25cm2 D.10cm210.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<211.用配方法解下列方程时,配方有错误的是()A.化为 B.化为C.化为 D.化为12.在同一直角坐标系中,反比例函数y=与一次函数y=ax+b的图象可能是()A. B.C. D.二、填空题(每题4分,共24分)13.计算:_____.14.___________15.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.16.已知反比例函数的图象经过点,则这个反比例函数的解析式是__________.17.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.18.若关于x的函数与x轴仅有一个公共点,则实数k的值为.三、解答题(共78分)19.(8分)已知:如图,在中,是边上的高,且,,,求的长.20.(8分)为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:使用次数05101520人数11431(1)这10位居民一周内使用共享单车次数的中位数是次,众数是次.(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是.(填“中位数”,“众数”或“平均数”)(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.21.(8分)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.(10分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.23.(10分)解方程:.24.(10分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.25.(12分)速滑运动受到许多年轻人的喜爱。如图,四边形是某速滑场馆建造的滑台,已知,滑台的高为米,且坡面的坡度为.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为.(1)求新坡面的坡角及的长;(2)原坡面底部的正前方米处是护墙,为保证安全,体育管理部门规定,坡面底部至少距护墙米。请问新的设计方案能否通过,试说明理由(参考数据:)26.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?

参考答案一、选择题(每题4分,共48分)1、B【分析】根据“上加下减,左加右减”的原则进行解答即可.【题目详解】解:由“左加右减”的原则可知,将抛物线y=﹣x2+1向右平移2个单位长度所得的抛物线的解析式为:y=﹣(x﹣2)2+1.再向下平移3个单位长度所得抛物线的解析式为:y=﹣(x﹣2)2﹣2.故选:B.【题目点拨】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.2、D【分析】根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.【题目详解】因为点M(a,2a)在反比例函数y=的图象上,可得:,,解得:,故选D.【题目点拨】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.3、C【分析】直接利用特殊角的三角函数值求出答案.【题目详解】解:sin30°=故选C【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.4、D【解题分析】根据抛物线的顶点式,直接得出结论即可.【题目详解】解:∵抛物线y=2(x-1)2-6,

∴抛物线的对称轴是x=1.

故选D.【题目点拨】本题考查了二次函数的性质,要熟悉二次函数的顶点式:y=a(x-h)2+k(a≠0),其顶点坐标为(h,k),对称轴为x=h.5、C【分析】首先根据开口方向确定a的取值范围,根据对称轴的位置确定b的取值范围,根据抛物线与y轴的交点确定c的取值范围,根据抛物线与x轴是否有交点确定b2﹣4ac的取值范围,根据x=﹣1函数值可以判断.【题目详解】解:抛物线开口向下,,对称轴,,抛物线与轴的交点在轴的上方,,,故①错误;抛物线与轴有两个交点,,故②正确;对称轴,,,故③正确;根据图象可知,当时,,故④正确;故选:.【题目点拨】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.6、A【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【题目详解】∵圆锥的高为12,底面圆的半径为5,∴圆锥的母线长为:=13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A.【题目点拨】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键.7、B【解题分析】由题意根据轴对称图形与中心对称图形的概念进行依次判断即可.【题目详解】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B.【题目点拨】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【题目详解】解:几何体的俯视图为,故选C【题目点拨】本题考查由三视图判断几何体,难度不大.9、B【解题分析】设矩形DEFG的宽DE=x,根据相似三角形对应高的比等于相似比列式求出DG,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【题目详解】如图所示:设矩形DEFG的宽DE=x,则AM=AH-HM=8-x,

∵矩形的对边DG∥EF,

∴△ADG∽△ABC,∴,即,解得DG=(8-x),

四边形DEFG的面积=(8-x)x=-(x1-8x+16)+10=-(x-4)1+10,

所以,当x=4,即DE=4时,四边形DEFG最大面积为10cm1.

故选B.【题目点拨】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG的宽表示出长是解题的关键.10、B【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【题目详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.11、C【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【题目详解】A、由原方程,得,等式的两边同时加上一次项系数2的一半的平方1,得;故本选项正确;B、由原方程,得,等式的两边同时加上一次项系数−7的一半的平方,得,,故本选项正确;C、由原方程,得,等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;故本选项错误;D、由原方程,得3x2−4x=2,化二次项系数为1,得x2−x=等式的两边同时加上一次项系数−的一半的平方,得;故本选项正确.故选:C.【题目点拨】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12、D【分析】先根据一次函数图象经过的象限得出a、b的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【题目详解】∵一次函数图象应该过第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【题目点拨】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(每题4分,共24分)13、3【解题分析】根据二次根式的乘法法则和零指数幂的意义运算【题目详解】原式=+1=2+1=3.【题目点拨】本题考查了二次根式的混合计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算.14、【分析】代入特殊角度的三角函数值计算即可.【题目详解】故答案为:.【题目点拨】本题考查了特殊角度的三角函数值计算,熟记特殊角度的三角函数值是关键.15、2【解题分析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.16、【分析】把点,代入求解即可.【题目详解】解:由于反比例函数的图象经过点,∴把点,代入中,解得k=6,所以函数解析式为:故答案为:【题目点拨】本题考查待定系数法解函数解析式,掌握待定系数法的解题步骤正确计算是关键.17、【解题分析】试题分析:,解得r=.考点:弧长的计算.18、0或-1.【解题分析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次函数,与x轴仅有一个公共点.当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即.综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1.三、解答题(共78分)19、【分析】根据直角三角形中,30°所对的直角边等于斜边的一半,解得AD的长,再由等腰直角三角形的两条腰相等可得DC的长,最后根据勾股定理解题即可.【题目详解】解:是边上的高【题目点拨】本题考查含30°的直角三角形、等腰直角三角形的性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.20、(1)10,10;(2)中位数和众数;(3)22000【分析】(1)根据众数、中位数和平均数的定义分别求解可得;

(2)由中位数和众数不受极端值影响可得答案;

(3)用总人数乘以样本中居民的平均使用次数即可得.【题目详解】解:(1)这10位居民一周内使用共享单车次数的中位数是:(次),根据使用次数可得:众数为10次;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,

故答案为:中位数和众数;(3)平均数为(次),(次)估计该小区居民一周内使用共享单车的总次数为22000次.【题目点拨】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.21、(3)证明见解析;(3)2πcm3.【分析】连接BC,OD,OC,设OC与BD交于点M.(3)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;(3)证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.【题目详解】如图,连接BC,OD,OC,设OC与BD交于点M.(3)根据圆周角定理得:∠COB=3∠CDB=3×30°=20°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=380°﹣30°﹣20°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(3)由(3)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=BD=3.在Rt△OBM中,∠COB=20°,OB==2.在△CDM与△OBM中,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC==2π(cm3).考点:3.切线的判定;3.扇形面积的计算.22、直线AD与⊙O相切,理由见解析【分析】先由AB是⊙O的直径可得∠ACB=90°,进而得出∠ABC+∠BAC=90°;接下来再由∠CAD=∠ABC,运用等量代换可得∠CAD+∠BAC=90°,再运用切线的判定即可求解.【题目详解】直线AD与⊙O相切.∵AB是⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.又∵∠CAD=∠ABC,∴∠CAD+∠BAC=90°.∴直线AD与⊙O相切【题目点拨】本题考查了圆周角定理,直线与圆的位置关系.半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径;经过半径外端点并且垂直于这条半径的直线是圆的切线.23、,【分析】通过观察方程形式,利用二次三项式的因式分解法解方程比较简单.【题目详解】解:原方程变形为∴,.【题目点拨】此题考查因式分解法解一元二次方程,解题关键在于掌握运算法则.24、(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)40;(3)要在7:50~8:10时间段内接水.【分析】(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,即可求得k1、b的值,从而得一次函数的解析式;当8<x≤a时,设y=,将(8,100)的坐标代入y=,求得k2的值,即可得反比例函数的解析式;(2)把y=20代入反比例函数的解析式,即可求得a值;(3)把y=40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40℃的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围.【题目详解】解:(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20∴当0≤x≤8时,y=10x+20.当8<x≤a时,设y=,将(8,100)的坐标代入y=,得k2=800∴当8<x≤a时,y=.综上,当0≤x≤8时,y=10x+20;当8<x≤a时,y=(2)将y=20代入y=,解得x=40,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论