2024届吉林省长春市解放大路中学数学九年级第一学期期末学业水平测试试题含解析_第1页
2024届吉林省长春市解放大路中学数学九年级第一学期期末学业水平测试试题含解析_第2页
2024届吉林省长春市解放大路中学数学九年级第一学期期末学业水平测试试题含解析_第3页
2024届吉林省长春市解放大路中学数学九年级第一学期期末学业水平测试试题含解析_第4页
2024届吉林省长春市解放大路中学数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春市解放大路中学数学九年级第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1个 B.2个 C.1个 D.4个2.一元二次方程的一次项系数和常数项依次是()A.-1和1 B.1和1 C.2和1 D.0和13.如图,在△ABC中,M,N分别为AC,BC的中点.则△CMN与△CAB的面积之比是()A.1:2 B.1:3 C.1:4 D.1:94.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.25.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别1234567分值90959088909285这组数据的中位数和众数分别是A.88,90 B.90,90 C.88,95 D.90,956.方程是关于的一元二次方程,则的值不能是()A.0 B. C. D.7.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.AEEC=BEED B.AE8.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸9.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n=()A.0 B.3 C.16 D.910.如图,为的直径,点是弧的中点,过点作于点,延长交于点,若,,则的直径长为()A.10 B.13 C.15 D.1.11.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm12.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.2二、填空题(每题4分,共24分)13.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是_______.(填序号)14.如图,⊙O是△ABC的外接圆,D是AC的中点,连结AD,BD,其中BD与AC交于点E.写出图中所有与△ADE相似的三角形:___________.15.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.16.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是__________.17.如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,,是与水平线垂直的两根支柱,米,米,米.(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_________.(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_______________.18.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.三、解答题(共78分)19.(8分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?20.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?21.(8分)如图,在某广场上空飘着一只气球P,A、B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P的高度(精确到0.1米).22.(10分)如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子与地面的夹角为45°,梯子底端与墙的距离CB=2米,若梯子底端C的位置不动,再将梯子斜靠在左墙,测得梯子与地面的夹角为60°,则此时梯子的顶端与地面的距离A'D的长是多少米?(结果保留根号)23.(10分)(1)解方程:;(2)计算:24.(10分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为8千米,仰角为30°.火箭继续直线上升到达点处,此时海岸边处的雷达测得处的仰角增加15°,求此时火箭所在点处与发射站点处的距离.(结果精确到0.1千米)(参考数据:,)25.(12分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).(1)求此抛物线的函数表达式;(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当△BCD面积最大时,求点P的坐标;(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.26.小明和小亮用三枚质地均匀的硬币做游戏,游戏规则是:同时抛掷这三枚硬币,出现两枚正面向上,一枚正面向下,则小明赢;出现两枚正面向下,一枚正面向上,则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.2、A【分析】找出2x2-x+1的一次项-x、和常数项+1,再确定一次项的系数即可.【题目详解】2x2-x+1的一次项是-x,系数是-1,常数项是1.故选A.【题目点拨】本题考查一元二次方程的一般形式.3、C【解题分析】由M、N分别为AC、BC的中点可得出MN∥AB,AB=2MN,进而可得出△ABC∽△MNC,根据相似三角形的性质即可得到结论.【题目详解】∵M、N分别为AC、BC的中点,∴MN∥AB,且AB=2MN,∴△ABC∽△MNC,∴()2=.故选C.【题目点拨】本题考查了相似三角形的判定与性质以及三角形中位线定理,根据三角形中位线定理结合相似三角形的判定定理找出△ABC∽△MNC是解题的关键.4、D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【题目详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是方差是故选D【题目点拨】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.5、B【解题分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,1,1,1,92,95,∴中位数是按从小到大排列后第4个数为:1.众数是在一组数据中,出现次数最多的数据,这组数据中1出现三次,出现的次数最多,故这组数据的众数为1.故选B.6、C【题目详解】解:是关于的一元二次方程,则解得m≠故选C.【题目点拨】本题考查一元二次方程的概念,注意二次项系数不能为零.7、A【解题分析】利用平行线的性质以及相似三角形的性质一一判断即可.【题目详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故选项故选:A.【题目点拨】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【题目详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【题目点拨】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.9、C【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m+1.故设抛物线解析式为y=(x+m+1)2,直接将A(m,n)代入,通过解方程来求n的值.【题目详解】∵抛物线y=x2+bx+c过点A(m,n),B(m+8,n),∴对称轴是x==m+1.又∵抛物线y=x2+bx+c与x轴只有一个交点,∴设抛物线解析式为y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故选:C.【题目点拨】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.10、C【分析】连接OD交AC于点G,根据垂径定理以及弦、弧之间的关系先得出DF=AC,再由垂径定理及推论得出DE的长以及OD⊥AC,最后在Rt△DOE中,根据勾股定理列方程求得半径r,从而求出结果.【题目详解】解:连接OD交AC于点G,∵AB⊥DF,∴,DE=EF.又点是弧的中点,∴,OD⊥AC,∴,∴AC=DF=12,∴DE=2.设的半径为r,∴OE=AO-AE=r-3,在Rt△ODE中,根据勾股定理得,OE2+DE2=OD2,∴(r-3)2+22=r2,解得r=.∴的直径为3.故选:C.【题目点拨】本题主要考查垂径定理及其推论,弧、弦之间的关系以及勾股定理,解题的关键是通过作辅助线构造直角三角形,是中考常考题型.11、C【分析】连接OA,根据垂径定理,求出AD,根据勾股定理计算即可.【题目详解】连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选C.【题目点拨】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.12、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【题目详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【题目点拨】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.二、填空题(每题4分,共24分)13、③【分析】根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.【题目详解】①、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;②、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;③、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;④、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;故答案为:③.【题目点拨】此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.14、,【分析】根据两角对应相等的两个三角形相似即可判断.【题目详解】解:∵,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【题目点拨】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、1.【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【题目详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=或x=4,当x=时,+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=1.故答案为:1.【题目点拨】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键.16、【解题分析】袋子中一共有3个球,其中有2个黑球,根据概率公式直接进行计算即可.【题目详解】袋子中一共有3个球,其中有2个黑球,所以任意摸出一个球,摸到黑球的概率是,故答案为:.【题目点拨】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.17、【分析】(1)以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴建立平面直角坐标系,利用待定系数法确定二次函数的解析式后延长BD到M使MD=BD,连接AM交OC于点P,则点P即为所求;利用待定系数法确定直线M'A'的解析式,从而求得点P′的坐标,从而求得O、P之间的距离;(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.【题目详解】(1)如图建立平面直角坐标系(以点为原点,所在直线为轴,垂直于的直线为轴),延长到使,连接交于点,则点即为所求.设抛物线的函数解析式为,由题意知旋转后点的坐标为.带入解析式得抛物线的函数解析式为:,当时,,点的坐标为,点的坐标为代入,求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.点的坐标为,点坐标为代入,,的坐标求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.【题目点拨】本题考查了二次函数的应用,解题的关键是从实际问题中整理出二次函数模型,利用二次函数的知识解决生活中的实际问题.18、1【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【题目详解】解:∵△ABC绕点A逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB,AC′=AC,∵∠BAC'=80°,∴∠C′AB′=∠CAB=C′AB=40°,∴∠ACC′=70°,∴∠B=∠ACC′﹣∠CAB=1°,故答案为:1.【题目点拨】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键.三、解答题(共78分)19、(4)证明见解析;(4)证明见解析;(4)4【解题分析】试题分析:(4)由作图知:PQ为线段AC的垂直平分线,得到AE=CE,AD=CD,由CF∥AB,得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA证得△AED≌△CFD;(4)由△AED≌△CFD,得到AE=CF,由EF为线段AC的垂直平分线,得到EC=EA,FC=FA,从而有EC=EA=FC=FA,利用四边相等的四边形是菱形判定四边形AECF为菱形;(4)在Rt△ADE中,由勾股定理得到ED=4,故EF=8,AC=6,从而得到菱形AECF的面积.试题解析:(4)由作图知:PQ为线段AC的垂直平分线,∴AE=CE,AD=CD,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,∵∠EAC=∠FCA,AD=CD,∠CFD=∠AED,∴△AED≌△CFD;(4)∵△AED≌△CFD,∴AE=CF,∵EF为线段AC的垂直平分线,∴EC=EA,FC=FA,∴EC=EA=FC=FA,∴四边形AECF为菱形;(4)在Rt△ADE中,∵AD=4,AE=5,∴ED=4,∴EF=8,AC=6,∴S菱形AECF=8×6÷4=4,∴菱形AECF的面积是4.考点:4.菱形的判定;4.全等三角形的判定与性质;4.线段垂直平分线的性质.20、(1)甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【解题分析】分析:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方.根据题意,得解之,得答:甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)设乙队平均每天的施工土方量至少要比原来提高z万立方.根据题意,得40(0.38+z)+110(0.38+z+0.42≥120,解之,得z≥0.112,答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.点睛:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.21、气球P的高度约是32.9米.【分析】过点P作PC⊥AB于C点,由PC及∠A、∠B的正切值表示出AB,即AB=,求得PC即可.【题目详解】过点P作PC⊥AB于C,设PC=x米,在Rt△PAC中,∠PAB=45°,∴AC="PC"=x米,在Rt△PBC中,∠PBA=30°,∵tan∠PBA=,∴(米)又∵AB=90米,∴AB=AC+CB=米∴≈32.9(米),答:气球P的高度约是32.9米.22、此时梯子的顶端与地面的距离A'D的长是米【分析】由Rt△ABC求出梯子的长度,再利用Rt△A'DC,求得离A'D的长.【题目详解】解:在Rt△ABC中,∵∠BCA=45°,∴AB=BC=2米,∴米,∴A'C=AC=米,∴在Rt△A'DC中,A'D=A'C•sin60°=×=,∴此时梯子的顶端与地面的距离A'D的长是米.【题目点拨】此题考查解直角三角形的实际应用,根据题意构建直角三角形是解题的关键,题中注意:梯子的长度在两个三角形中是相等的.23、(1)x1=-1,x2=4;(2)原式=【分析】(1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【题目详解】解:(1)(x+1)(x-4)=0∴x1=-1,x2=4;(2)原式=+-2×=【题目点拨】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值.24、此时火箭所在点处与发射站点处的距离约为.【解题分析】利用已知结合锐角三角函数关系得出的长.【题目详解】解:如图所示:连接,由题意可得:,,,,在直角中,.在直角中,.答:此时火箭所在点处与发射站点处的距离约为.【题目点拨】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.25、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论