重庆市西南大附中2024届九年级数学第一学期期末学业质量监测试题含解析_第1页
重庆市西南大附中2024届九年级数学第一学期期末学业质量监测试题含解析_第2页
重庆市西南大附中2024届九年级数学第一学期期末学业质量监测试题含解析_第3页
重庆市西南大附中2024届九年级数学第一学期期末学业质量监测试题含解析_第4页
重庆市西南大附中2024届九年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市西南大附中2024届九年级数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列四个函数图象中,当x>0时,函数值y随自变量x的增大而减小的是()A. B.C. D.2.如图,直线l1∥l2∥l3,两条直线AC和DF与l1,l2,l3分别相交于点A、B、C和点D、E、F,则下列比例式不正确的是()A. B. C. D.3.已知是关于的一元二次方程的两个根,且满足,则的值为()A.2 B. C.1 D.4.抛物线的对称轴是()A. B. C. D.5.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.6.如图是抛物线的部分图象,其顶点坐标是,给出下列结论:①;②;③;④;⑤.其中正确结论的个数是()A.2 B.3 C.4 D.57.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.128.如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正确的个数为()A.1 B.2 C.3 D.49.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A. B. C. D.10.已知2a=3b(b≠0),则下列比例式成立的是()A.= B. C. D.二、填空题(每小题3分,共24分)11.在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.12.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、…的圆心依次按点A、B、C、D、E、F循环,其弧长分别为l1、l2、l3、l4、l5、l6、….当AB=1时,l3=________,l2019=_________.13.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为_____.14.如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.15.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.16.已知两个数的差等于2,积等于15,则这两个数中较大的是.17.关于x的方程的根为______.18.如图,已知A(5,0),B(4,4),以OA、AB为边作▱OABC,若一个反比例函数的图象经过C点,则这个函数的解析式为_____.三、解答题(共66分)19.(10分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024806001800摸到白球的频率0.650.620.5930.6040.60.60.6(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少个?20.(6分)如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.①试说明BE·AD=CD·AE;②根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想,(只须写出有线段的一组即可)21.(6分)如图(1),矩形中,,,点,分别在边,上,点,分别在边,上,,交于点,记.(1)如图(2)若的值为1,当时,求的值.(2)若的值为3,当点是矩形的顶点,,时,求的值.22.(8分)如图,从一块长80厘米,宽60厘米的铁片中间截去一个小长方形,使截去小长方形的面积是原来铁片面积的一半,并且剩下的长方框四周的宽度一样,求这个宽度.23.(8分)如图,在中,,,为外一点,将绕点按顺时针方向旋转得到,且点、、三点在同一直线上.(1)(观察猜想)在图①中,;在图②中,(用含的代数式表示)(2)(类比探究)如图③,若,请补全图形,再过点作于点,探究线段,,之间的数量关系,并证明你的结论;(3)(问题解决)若,,,求点到的距离.24.(8分)如图,抛物线经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:(1)求抛物线的解析式及顶点D的坐标;(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为25.(10分)如图,已知中,,.求的面积.26.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)每件衬衫降价多少元时,商场平均每天的盈利是1050元?(2)每件衬衫降价多少元时,商场平均每天盈利最大?最大盈利是多少?

参考答案一、选择题(每小题3分,共30分)1、C【分析】直接根据图象判断,当x>0时,从左到右图象是下降的趋势的即为正确选项.【题目详解】A、当x>0时,y随x的增大而增大,错误;B、当x>0时,y随x的增大而增大,错误;C、当x>0时,y随x的增大而减小,正确;D、当x>0时,y随x的增大先减小而后增大,错误;故选:C.【题目点拨】本题主要考查根据函数图象判断增减性,掌握函数的图象和性质是解题的关键.2、D【解题分析】试题分析:根据平行线分线段成比例定理,即可进行判断.解:∵l1∥l2∥l3,∴,,,.∴选项A、B、C正确,D错误.故选D.点睛:本题是一道关于平行线分线段成比例的题目,掌握平行线分线段成比例的相关知识是解答本题的关键3、B【分析】根据根与系数的关系,即韦达定理可得,易求,从而可得,解可求,再利用根的判别式求出符合题意的.【题目详解】由题意可得,a=1,b=k,c=-1,∵满足,∴①根据韦达定理②把②式代入①式,可得:k=-2故选B.【题目点拨】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合进行解题.4、A【分析】直接利用对称轴为计算即可.【题目详解】∵,∴抛物线的对称轴是,故选:A.【题目点拨】本题主要考查二次函数的对称轴,掌握二次函数对称轴的求法是解题的关键.5、D【解题分析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.6、C【分析】①根据开口方向,对称轴的位置以及二次函数与y轴的交点的位置即可判断出a,b,c的正负,从而即可判断结论是否正确;②根据对称轴为即可得出结论;③利用顶点的纵坐标即可判断;④利用时的函数值及a,b之间的关系即可判断;⑤利用时的函数值,即可判断结论是否正确.【题目详解】①∵抛物线开口方向向上,.∵对称轴为,∴.∵抛物线与y轴的交点在y轴的负半轴,∴,∴,故错误;②∵对称轴为,∴,,故正确;③由顶点的纵坐标得,,∴,∴,∴,故正确;④当时,,故正确;⑤当时,,故正确;所以正确的有4个,故选:C.【题目点拨】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.7、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【题目详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.8、C【解题分析】通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,用含x的式子表示的BE、EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论.【题目详解】①∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵△AEF等边三角形,∴AE=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴AC是EF的垂直平分线,∴AC平分∠EAF,∴∠EAC=∠FAC=×60°=30°,∵∠BAC=∠DAC=45°,∴∠BAE=∠DAF=15°,故①正确;②设EC=x,则FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60°=EFsin60°=2×CGsin60°=2×CG,∴AG=CG,故②正确;③由②知:设EC=x,EF=x,AC=CG+AG=CG+CG=,∴AB==,∴BE=AB﹣CE=﹣x=,∴BE+DF=2×=(﹣1)x≠x,故③错误;④S△CEF=,S△ABE=BE•AB=,∴S△CEF=2S△ABE,故④正确,所以本题正确的个数有3个,分别是①②④,故选C.【题目点拨】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.9、C【题目详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为故选C10、B【分析】根据等式的性质,可得答案.【题目详解】解:A、等式的左边除以4,右边除以9,故A错误;B、等式的两边都除以6,故B正确;C、等式的左边除以2b,右边除以,故C错误;D、等式的左边除以4,右边除以b2,故D错误;故选:B.【题目点拨】本题考查了比例的性质,利用了等式的性质2:等式的两边都乘以或除以同一个不为零的数或整式,结果不变.二、填空题(每小题3分,共24分)11、二、四.【解题分析】试题解析:根据关联点的特征可知:如果一个点在第一象限,它的关联点在第三象限.如果一个点在第二象限,它的关联点在第二象限.如果一个点在第三象限,它的关联点在第一象限.如果一个点在第四象限,它的关联点在第四象限.故答案为二,四.12、π673π【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2019的长.【题目详解】解:根据题意得:l1=,l2=,l3=,则l2019=.故答案为:π;673π.【题目点拨】本题考查的是弧长的计算,先用公式计算,找出规律,则可求出ln的长.13、(4,6)或(4,0)【解题分析】试题分析:由AB∥y轴和点A的坐标可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的纵坐标可能的情况试题解析:∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3-3=0,∴B点的坐标为(4,0)或(4,6).考点:点的坐标.14、或【分析】分别讨论∠E=90°,∠EBF=90°两种情况:①当∠E=90°时,由折叠性质和等腰三角形的性质可推出△BDC为等腰直角三角形,再求出∠ABD=∠ABE=22.5°,进而得到∠F=45°,推出△ADF为等腰直角三角形即可求出斜边AF的长度;②当∠EBF=90°时,先证△ABD∽△ACB,利用对应边成比例求出AD和CD的长,再证△ADF∽△CDB,利用对应边成比例求出AF.【题目详解】①当∠E=90°时,由折叠性质可知∠ADB=∠E=90°,如图所示,在△ABC中,CA=CB=4,∠C=45°∴∠ABC=∠BAC==67.5°∵∠BDC=90°,∠C=45°∴△BCD为等腰直角三角形,∴CD=BC=,∠DBC=45°∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°∴∠EBF=45°∴∠F=90°-45°=45°∴△ADF为等腰直角三角形∴AF=②当∠EBF=90°时,如图所示,由折叠的性质可知∠ABE=∠ABD=45°,∵∠BAD=∠CAB∴△ABD∽△ACB∴由情况①中的AD=,BD=,可得AB=∴AD=∴CD=∵∠DBC=∠ABC-∠ABD=22.8°∵∠E=∠ADB=∠C+∠DBC=67.5°∴∠F=22.5°=∠DBC∴EF∥BC∴△ADF∽△CDB∴∴∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD∴∠E+∠EBF=112.5°+∠ABD>90°∴∠F不可能为直角综上所述,AF的长为或.故答案为:或.【题目点拨】本题考查了等腰三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,熟练掌握折叠前后对应角相等,分类讨论利用相似三角形的性质求边长是解题的关键.15、1【分析】由正方形的面积公式可求解.【题目详解】解:∵AC=3,

∴正方形ABCD的面积=3×3×=1,

故答案为:1.【题目点拨】本题考查了正方形的性质,熟练运用正方形的性质是解题的关键.16、5【分析】设这两个数中的大数为x,则小数为x﹣2,由题意建立方程求其解即可.【题目详解】解:设这两个数中的大数为x,则小数为x﹣2,由题意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴这两个数中较大的数是5,故答案为5;考点:一元二次方程的应用.17、x1=0,x2=【分析】直接由因式分解法方程,即可得到答案.【题目详解】解:∵,∴或,∴,;故答案为:,.【题目点拨】本题考查了解一元二次方程,解题的关键是熟练掌握因式分解法解方程.18、y=﹣【分析】直接利用平行四边形的性质得出C点坐标,再利用反比例函数解析式的求法得出答案.【题目详解】解:∵A(5,0),B(4,4),以OA、AB为边作▱OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.【题目点拨】本题主要考查的是平行四边形的性质和反比例函数解析式的求法,将反比例函数上的点带入解析式中即可求解.三、解答题(共66分)19、(1)0.6;(2)0.6;(3)盒子里黑颜色的球有20只,盒子白颜色的球有30只【分析】(1)观察表格找到逐渐稳定到的常数即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数,问题得解.【题目详解】(1)∵摸到白球的频率约为0.6,∴当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)∵摸到白球的频率为0.6,∴若从盒子里随机摸出一只球,则摸到白球的概率的估计值为0.6;(3)黑白球共有20只,白球为:50×0.6=30(只),黑球为:50﹣30=20(只).答:盒子里黑颜色的球有20只,盒子白颜色的球有30只.【题目点拨】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.20、(1)证明见解析;(2)猜想=或(理由见解析【解题分析】试题分析:(1)由已知条件易证∠BAE=∠CAD,∠AEB=∠ADC,从而可得△AEB∽△ADC,由此可得,这样就可得到BE·AD=DC·AE;(2)由(1)中所得△AEB∽△ADC可得=,结合∠DAE=∠BAC可得△BAC∽△EAD,从而可得:=或().试题解析:①∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠DAC=∠BAE,∵∠AEB=∠ADB+∠DAE,∠ADC=∠ADB+∠BDC,又∵∠DAE=∠BDC,∴∠AEB=∠ADC,∴△BEA∽△CDA,∴=,即BE·AD=CD·AE;②猜想=或(),由△BEA∽△CDA可知,=,即=,又∵∠DAE=∠BAC,∴△BAC∽△EAD,∴=或().21、(1)1;(2)或【分析】(1)作于,于,设交于点.证明,即可解决问题.(2)连接,.由,,推出,推出,由,推出,,设,则,,,接下来分两种情形①如图2中,当点与点重合时,点恰好与重合.②如图3中,当点与重合,分别求解即可.【题目详解】解:(1)如图,作于,于,设交于点.四边形是正方形,,,,,,,,,,,,,.(2)连接,,,,,,,,∴,,,,①如图,当点与点重合时,点恰好与重合,作于.,,,,.②如图,当点与点重合,作于,则,,,,,,,,,综上所述,的值为或【题目点拨】本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22、长方框的宽度为10厘米【分析】设长方框的宽度为x厘米,则减去小长方形的长为(80﹣2x)厘米,宽为(60﹣2x)厘米,根据长方形的面积公式结合截去小长方形的面积是原来铁片面积的一半,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】解:设长方框的宽度为x厘米,则减去小长方形的长为(80﹣2x)厘米,宽为(60﹣2x)厘米,依题意,得:(80﹣2x)(60﹣2x)=×80×60,整理,得:x2﹣70x+600=0,解得:x1=10,x2=60(不合题意,舍去).答:长方框的宽度为10厘米.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23、(1);;(2),证明见解析;(3)点到的距离为或.【分析】(1)在图①中由旋转可知,由三角形内角和可知∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,因为,∠OAP+∠PAB=∠OAB,所以∠APB=∠AOB=α;在图②中,由旋转可知,得到∠OBP+OAP=180°,通过四边形OAPB的内角和为360°,可以得到∠AOB+∠APB=180°,因此∠APB=;(2)由旋转可知≌,,,,因为,得到,即可得证;(3)当点在上方时,过点作于点,由条件可求得PA,再由可求出OH;当点在下方时,过点作于点,同理可求出OH.【题目详解】(1)①由三角形内角和为180°得到∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,由旋转可知,又∵∠OAP+∠PAB=∠OAB,∴∠OBP+∠PAB+∠ABO+∠AOB=180°,即∠PAB+∠ABP+∠AOB=180°,∴∠APB=∠AOB=α;②由旋转可知,∵=180°,∴∠OBP+OAP=180°,又∵∠OBP+OAP+∠AOB+∠APB=360°,∴∠AOB+∠APB=180°,∴∠APB=;(2)证明:由绕点按顺时针方向旋转得到∴≌,,,,又∵,∴∴(3)【解法1】(i)如图,当点在上方时,过点作于点由(1)知,,∵∴由(2)知,∴(ii)如图,当点在下方时,过点作于点由(1)知,,∵∴∴∴点到的距离为或.【解法2】(i)如图,当点在上方时,过点作于点,∵,,∴,∵,取的中点∴∴点,,,四点在圆上∴,且∴∴∵,,∴在中,,设,则∴,化简得:∴,(不合题意,舍去)∴(ii)若点在的下方,过点作,同理可得:∴点到的距离为或.【题目点拨】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论