安徽省池州市名校2024届数学九上期末监测模拟试题含解析_第1页
安徽省池州市名校2024届数学九上期末监测模拟试题含解析_第2页
安徽省池州市名校2024届数学九上期末监测模拟试题含解析_第3页
安徽省池州市名校2024届数学九上期末监测模拟试题含解析_第4页
安徽省池州市名校2024届数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省池州市名校2024届数学九上期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A. B.3 C. D.22.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限3.如图,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.关于优弧CAD,下列结论正确的是()A.经过点B和点E B.经过点B,不一定经过点EC.经过点E,不一定经过点B D.不一定经过点B和点E4.在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为()A.3 B.6 C.7 D.145.反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)6.五张完全相同的卡片上,分别写有数字1,2,3,4,5,现从中随机抽取一张,抽到的卡片上所写数字小于3的概率是()A. B. C. D.7.不论取何值时,抛物线与轴的交点有()A.0个 B.1个 C.2个 D.3个8.抛物线y=x2+kx﹣1与x轴交点的个数为()A.0个 B.1个 C.2个 D.以上都不对9.下列事件中,为必然事件的是()A.抛掷10枚质地均匀的硬币,5枚正面朝上B.某种彩票的中奖概率为,那么买100张这种彩票会有10张中奖C.抛掷一枚质地均匀的骰子,朝上一面的数字不大于6D.打开电视机,正在播放戏曲节目10.如图,在一块斜边长60cm的直角三角形木板()上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若CD:CB=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.202.5cm2 B.320cm2 C.400cm2 D.405cm211.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是:A.5米 B.6米 C.6.5米 D.7米12.若抛物线y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三点,则y1,y2,y3的大小关系为()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y1二、填空题(每题4分,共24分)13.已知,则________14.在一个不透明的袋中有2个红球,若干个白球,它们除颜色外其它都相同,若随机从袋中摸出一个球,摸到红球的概率是,则袋中有白球_________个.15.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若An=(a,b)表示正整数n为第a组第b个数(从左往右数),如A7=(4,1),则A20=______________.16.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.17.已知(a+b)(a+b﹣4)=﹣4,那么(a+b)=_____.18.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.三、解答题(共78分)19.(8分)如图,在中,,是边上的高,是边上的一个动点(不与,重合),,,垂足分别为,.(1)求证:;(2)与是否垂直?若垂直,请给出证明,若不垂直,请说明理由.20.(8分)已知反比例函数和一次函数.(1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式;(2)当时,两个函数的图象只有一个交点,求的值.21.(8分)如图,一次函数y1=k1x+b与反比例函数y1=的图象交于点A(a,﹣1)和B(1,3),且直线AB交y轴于点C,连接OA、OB.(1)求反比例函数的解析式和点A的坐标;(1)根据图象直接写出:当x在什么范围取值时,y1<y1.22.(10分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.23.(10分)计算或解方程:(1)(2)24.(10分)如图,已知为⊙的直径,为⊙的一条弦,点是⊙外一点,且,垂足为点,交⊙于点,的延长线交⊙于点,连接.(1)求证:;(2)若,求证:是⊙的切线;(3)若,,求⊙的半径.25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,OA=1,OB=3,抛物线的顶点坐标为D(1,4).(1)求A、B两点的坐标;(2)求抛物线的表达式;(3)过点D做直线DE//y轴,交x轴于点E,点P是抛物线上A、D两点间的一个动点(点P不于A、D两点重合),PA、PB与直线DE分别交于点G、F,当点P运动时,EF+EG的值是否变化,如不变,试求出该值;若变化,请说明理由。26.据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.

参考答案一、选择题(每题4分,共48分)1、D【分析】先求出AC,再根据正切的定义求解即可.【题目详解】设BC=x,则AB=3x,由勾股定理得,AC=,tanB===,故选D.考点:1.锐角三角函数的定义;2.勾股定理.2、B【题目详解】解:将点(m,3m)代入反比例函数得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.3、B【分析】由条件可知BC垂直平分AD,可证△ABC≌△DBC,可得∠BAC=∠BDC=90°故∠BAC+∠BDC=180°则A、B、D、C四点共圆,即可得结论.【题目详解】解:如图:设AD、BC交于M∵AC=CD,AD⊥BC∴M为AD中点∴BC垂直平分AD∴AB=DB∵BC=BC,AC=CD∴△ABC≌△DBC∴∠BAC=∠BDC=90°∴∠BAC+∠BDC=180°∴A、B、D、C四点共圆∴优弧CAD经过B,但不一定经过E故选B【题目点拨】本题考查了四点共圆,掌握四点共圆的判定是解题的关键.4、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,【题目详解】解:根据题意列出方程,解得:x=6,故选B.考点:利用频率估计概率.5、D【解题分析】分析:直接利用反比例函数图象上点的坐标特点进而得出答案.详解:∵反比例函数y=的图象经过点(3,-2),∴xy=k=-6,A、(-3,-2),此时xy=-3×(-2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(-2,-3),此时xy=-3×(-2)=6,不合题意;D、(-2,3),此时xy=-2×3=-6,符合题意;故选D.点睛:此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.6、B【分析】用小于3的卡片数除以卡片的总数量可得答案.【题目详解】由题意可知一共有5种结果,其中数字小于3的结果有抽到1和2两种,所以.故选:B.【题目点拨】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.7、C【分析】首先根据题意与轴的交点即,然后利用根的判别式判定即可.【题目详解】由题意,得与轴的交点,即∴不论取何值时,抛物线与轴的交点有两个故选C.【题目点拨】此题主要考查根据根的判别式判定抛物线与坐标轴的交点,熟练掌握,即可解题.8、C【分析】设y=0,得到一元二次方程,根据根的判别式判断有几个解就有与x轴有几个交点.【题目详解】解:∵抛物线y=x2+kx﹣1,∴当y=0时,则0=x2+kx﹣1,∴△=b2﹣4ac=k2+4>0,∴方程有2个不相等的实数根,∴抛物线y=x2+kx﹣与x轴交点的个数为2个,故选C.9、C【分析】根据必然事件的概念答题即可【题目详解】A:抛掷10枚质地均匀的硬币,概率为0.5,但是不一定5枚正面朝上,故A错误;B:概率是表示一个事件发生的可能性的大小,某种彩票的中奖概率为,是指买张这种彩票会有0.1的可能性中奖,故B错误;C:一枚质地均匀的骰子最大的数字是6,故C正确;D:.打开电视机,正在播放戏曲节目是随机事件,故D错误.故本题答案为:C【题目点拨】本题考查了必然事件的概念10、C【分析】先根据正方形的性质、相似三角形的判定与性质可得,设,从而可得,再在中,利用勾股定理可求出x的值,然后根据三角形的面积公式、正方形的面积公式计算即可.【题目详解】∵四边形CDEF为正方形,∴,,∴,,∵,,设,则,∴,在中,,即,解得或(不符题意,舍去),,则剩余部分的面积为,故选:C.【题目点拨】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理等知识点,利用正方形的性质找出两个相似三角形是解题关键.11、A【分析】在,直接根据正弦的定义求解即可.【题目详解】如图:AB=13,作BC⊥AC,∵∴.故小车上升了5米,选A.【题目点拨】本题考查解直角三角形的应用-坡度坡角问题.解决本题的关键是将实际问题转化为数学问题,构造,在中解决问题.12、C【分析】根据抛物线y=ax2+2ax+4(a<0)可知该抛物线开口向下,可以求得抛物线的对称轴,又因为抛物线具有对称性,从而可以解答本题.【题目详解】解:∵抛物线y=ax2+2ax+4(a<0),∴对称轴为:x=,∴当x<−1时,y随x的增大而增大,当x>−1时,y随x的增大而减小,∵A(−,y1),B(−,y2),C(,y3)在抛物线上,且−<−,−0.5<,∴y3<y1<y2,故选:C.【题目点拨】本题考查二次函数的性质,解题的关键是明确二次函数具有对称性,在对称轴的两侧它的增减性不一样.二、填空题(每题4分,共24分)13、【解题分析】∵,∴8b=3(3a-b),即9a=11b,∴,故答案为.14、6【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【题目详解】解:设袋中有x个球.根据题意得,解得x=8(个),8-2=6个,∴袋中有8个白球.故答案为:6.【题目点拨】此题考查了概率的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、(6,5)【分析】通过新数组确定正整数n的位置,An=(a,b)表示正整数n为第a组第b个数(从左往右数),所有正整数从小到大排列第n个正整数,第一组(1),1个正整数,第二组(2,3)2个正整数,第三组(4,5,6)三个正整数,…,这样1+2+3+4+…+a>n,而1+2+3+4+…+(a-1)<n,能确第a组a个数从哪一个是开起,直到第b个数(从左往右数)表示正整数nA7表示正整数7按规律排1+2+3+4=10>7,1+2+3=6<7,说明7在第4组,第四组应有4个数为(7,8,9,10)而7是这组的第一个数,为此P7=(4,1),理解规律A20,先求第几组排进20,1+2+3+4+5+6=21>20,由1+2+3+4+5=15,第六组从16开始,按顺序找即可.【题目详解】A20是指正整数20的排序,按规律1+2+3+4+5+6=21>20,说明20在第六组,而1+2+3+4+5=15<20,第六组从16开始,取6个数即第六组数(16,17,18,19,20,21),从左数第5个数是20,故A20=(6,5).故答案为:(6,5).【题目点拨】本题考查按规律取数问题,关键是读懂An=(a,b)的含义,会用新数组来确定正整数n的位置.16、4【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得△DEF∽△ACB,根据相似三角形的性质可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AG=AH=x,BN=BM=y,根据线段的和差表示出AC、BC、AB的长,进而根据AC∶CB∶BA=3∶4∶1列出比例式,继而求出x、y的值,进而即可求解△ABC的周长.【题目详解】∵AC∶CB∶BA=3∶4∶1,设AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,设⊙O沿着△ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,∴DG∥EP,EQ∥FN,FM∥DH,∵⊙O的半径为1∴DG=DH=PE=QE=FN=FM=1,则有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,设DE=3k(k>0),则EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周长为4.故答案为4.【题目点拨】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.17、2【分析】设a+b=t,根据一元二次方程即可求出答案.【题目详解】解:设a+b=t,原方程化为:t(t﹣4)=﹣4,解得:t=2,即a+b=2,故答案为:2【题目点拨】本题考查换元法及解一元二次方程,关键在于整体换元,简化方程.18、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【题目详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【题目点拨】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.三、解答题(共78分)19、(1)证明见解析;(2)与垂直,证明见解析.【分析】(1)由比例线段可知,我们需要证明△ADC∽△EGC,由两个角对应相等即可证得;

(2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论;【题目详解】证明:(1)在和中,∵,,∴.∴.解:(2)与垂直.证明如下:在四边形中,∵,∴四边形为矩形.∴.,∴.又∵为直角三角形,,∴,∴.∴.∵,∴.即.∴.【题目点拨】本题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,等腰直角三角形的性质,同角的余角相等,判断出△ADF≌△CDG是解本题的关键.20、(1);(2)【分析】(1)根据两个函数图象的交点的横坐标是-2和3先求出两个交点坐标,然后把两点代入一次函数解析式求出k,b值,即可得到一次函数解析式;

(2)两个函数解析式联立组成方程组消去y得到关于x的一元二次方程,根据判别式=0求出b的值.【题目详解】解:(1)把-2和3分别代入中,得:和.把,代入中,.∴一次函数表达式为:;(2)当,则,联立得:,整理得:,只有一个交点,即,则,得.故b的值为4或-4.【题目点拨】本题主要考查待定系数法求函数解析式和函数交点坐标的求法,先利用反比例函数解析式求出两交点坐标是解本题的关键.21、(1)y=,A(﹣3,﹣1);(1)x<﹣3或0<x<1时,y1<y1【分析】(1)把点B的坐标代入y1,利用待定系数法求反比例函数解析式即可,把点A的坐标代入反比例函数解析式进行计算求出a的值,从而得到点A的坐标;(1)根据图象,写出一次函数图象在反比例函数图象下方的x的取值范围即可.【题目详解】(1)一次函数y1=k1x+b与反比例函数y1的图象交于点B(1,3),∴3,∴k1=6,∴反比例函数的解析式为y,∵A(a,﹣1)在y的图象上,∴﹣1,∴a=﹣3,∴点A的坐标为A(﹣3,﹣1);(1)根据图象得:当x<﹣3或0<x<1时,y1<y1.【题目点拨】本题考查了反比例函数与一次函数的交点问题,根据点B的坐标求出反比例函数解析式是解答本题的关键.22、证明见解析;【解题分析】试题分析:由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.考点:全等三角形的判定与性质.23、(1)5-;(2)x1=-2,x2=【分析】(1)利用完全平方差公式以及化简二次根式和代入特殊三角函数进行计算即可;(2)由题意观察原方程,可用因式分解法中十字相乘法或者公式法求解.【题目详解】(1)计算:解:原式=7-4++2××=7-4+2-2+=5-.(2)解法一:(2x-3)(x+2)=02x-3=0或x+2=0,x1=-2,x2=.解法二:a=2,b=1,c=-6,△=b2-4ac=12-4×2×(-6)=49,x=,x1=-2,x2=.【题目点拨】本题主要考查用因式分解法解一元二次方程以及实数的综合运算,涉及的知识点有特殊角的三角形函数值、完全平方差公式以及二次根式的分母有理化等.24、(1)见解析;(2)见解析;(3)5【分析】(1)根据圆周角定理可得出,再结合,即可证明结论;(2)连接,利用三角形内角和定理以及圆周角定理可得出,,得出即可证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论