2024届浙江省杭州萧山瓜沥片学校九年级数学第一学期期末调研模拟试题含解析_第1页
2024届浙江省杭州萧山瓜沥片学校九年级数学第一学期期末调研模拟试题含解析_第2页
2024届浙江省杭州萧山瓜沥片学校九年级数学第一学期期末调研模拟试题含解析_第3页
2024届浙江省杭州萧山瓜沥片学校九年级数学第一学期期末调研模拟试题含解析_第4页
2024届浙江省杭州萧山瓜沥片学校九年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省杭州萧山瓜沥片学校九年级数学第一学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知方程的两根为,则的值是()A.1 B.2 C.-2 D.42.一件衣服225元,连续两次降价x%后售价为144元,则x=()A.0.2 B.2 C.8 D.203.如图,是的直径,弦于,连接、,下列结论中不一定正确的是()A. B. C. D.4.一个不透明的布袋里装有8个只有颜色不同的球,其中2个红球,6个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A. B. C. D.5.如图中几何体的主视图是()A. B. C. D.6.如图,一个半径为r(r<1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr2 B.C. D.7.如图,把一个直角三角板△ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD,则∠BDC的度数为()A.15° B.20° C.25° D.30°8.已知菱形的周长为40cm,两对角线长度比为3:4,则对角线长分别为()A.12cm.16cm B.6cm,8cm C.3cm,4cm D.24cm,32cm9.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为()A. B. C. D.10.在同一坐标系中一次函数和二次函数的图象可能为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图:M为反比例函数图象上一点,轴于A,时,______.12.在平面直角坐标系中,已知、两点,以坐标原点为位似中心,相似比为,把线段缩小后得到线段,则的长度等于________.13.设、是一元二次方程的两实数根,则的值为_________14.点(-2,5)关于原点对称的点的坐标是_____________.15.为了对1000件某品牌衬衣进行抽检,统计合格衬衣的件数,在相同条件下,经过大量的重复抽检,发现一件合格衬衣的频率稳定在常数0.98附近,由此可估计这1000件中不合格的衬衣约为__________件.16.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.17.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE折叠后得到△A′BE,延长BA′交CD于点F,则DF的长为______.18.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_____.三、解答题(共66分)19.(10分)为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.(1)求甲、乙两工程队每天能完成塑胶改造的面积;(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.20.(6分)如图,某中学九年级“智慧之星”数学社团的成员利用周末开展课外实践活动,他们要测量中心公园内的人工湖中的两个小岛,间的距离.借助人工湖旁的小山,某同学从山顶处测得观看湖中小岛的俯角为,观看湖中小岛的俯角为.已知小山的高为180米,求小岛,间的距离.21.(6分)解方程:(1)x2+2x﹣3=0;(2)x(x+1)=2(x+1).22.(8分)(8分)向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.23.(8分)如图,抛物线y=ax2+bx过A(4,0)B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H(1)求抛物线的解析式.(2)直接写出点C的坐标,并求出△ABC的面积.(3)点P是抛物线BA段上一动点,当△ABP的面积为3时,求出点P的坐标.24.(8分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.(10分)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.26.(10分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?

参考答案一、选择题(每小题3分,共30分)1、A【分析】先化成一元二次方程的一般形式,根据根与系数的关系得出x1+x2,x1•x2,代入求出即可.【题目详解】∵2x2﹣3x=1,∴2x2﹣3x﹣1=0,由根与系数的关系得:x1+x2,x1•x2,所以x1+x1x2+x2()=1.故选:A.【题目点拨】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解答本题的关键.2、D【分析】根据该衣服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】解:依题意,得:225(1﹣x%)2=144,解得:x1=20,x2=180(不合题意,舍去).故选:D.【题目点拨】本题考查一元二次方程的应用,根据题意得出关于x的一元二次方程是解题关键.3、C【分析】根据垂径定理及圆周角定理对各选项进行逐一分析即可.【题目详解】解:∵CD是⊙O的直径,弦AB⊥CD于E,

∴AE=BE,,故A、B正确;

∵CD是⊙O的直径,

∴∠DBC=90°,故D正确.

故选:C.【题目点拨】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.4、A【解题分析】用白球的个数除以球的总个数即为所求的概率.【题目详解】解:因为一共有8个球,白球有6个,所以从布袋里任意摸出1个球,摸到白球的概率为,故选:A.【题目点拨】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.5、D【解题分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【题目详解】解:从正面看应得到第一层有3个正方形,第二层从左面数第1个正方形上面有1个正方形,故选D.【题目点拨】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6、C【分析】当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,根据六边形的性质得出,所以,再由锐角三角函数的定义求出BF的长,最后利用可得出答案.【题目详解】如图,当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,∵多边形是正六边形,∴,,∴圆形纸片不能接触到的部分的面积是故选:C.【题目点拨】本题主要考查正六边形和圆,掌握正六边形的性质和特殊角的三角函数值是解题的关键.7、A【分析】根据图形旋转的性质得出△ABC≌△EBD,可得出BC=BD,根据图形旋转的性质求出∠EBD的度数,再由等腰三角形的性质即可得出∠BDC的度数.【题目详解】∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=150°,∴∠BDC=(180°﹣150°)=15°;故选:A.【题目点拨】本题考查的是旋转的性质、等腰三角形的性质、直角三角形的性质,熟知图形旋转不变性的性质是解答此题的关键.8、A【解题分析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A.考点:1、菱形的性质;2、勾股定理.9、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.0000963,这个数据用科学记数法可表示为9.63×.

故选:A.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、A【题目详解】根据二次函数的解析式可得:二次函数图像经过坐标原点,则排除B和C,A选项中一次函数a>0,b<0,二次函数a>0,b<0,符合题意.故选A.【题目点拨】本题考查了(1)、一次函数的图像;(2)、二次函数的图像二、填空题(每小题3分,共24分)11、﹣1.【分析】根据反比例函数系数的几何意义,由S△AOM=4,可可求出|k|=1,再由函数图像过二、四象限可知k<0,,从而可求出k的值.【题目详解】∵MA⊥y轴,∴S△AOM=|k|=4,∵k<0,∴k=﹣1.故答案为﹣1.【题目点拨】本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于.12、【分析】已知A(6,2)、B(6,0)两点则AB=2,以坐标原点O为位似中心,相似比为,则A′B′:AB=2:2.即可得出A′B′的长度等于2.【题目详解】∵A(6,2)、B(6,0),∴AB=2.又∵相似比为,∴A′B′:AB=2:2,∴A′B′=2.【题目点拨】本题主要考查位似的性质,位似比就是相似比.13、27【题目详解】解:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.故答案为27.【题目点拨】此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.14、(2,-5)【解题分析】点(-2,5)关于原点的对称点的点的坐标是(2,-5).故答案为(2,-5).点睛:在平面直角坐标系中,点P(x,y)关于原点的对称点的坐标是(-x,-y).15、1【分析】用总件数乘以不合格衬衣的频率即可得出答案.【题目详解】这1000件中不合格的衬衣约为:(件);

故答案为:1.【题目点拨】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.16、.【解题分析】⊙O是△ABC的外接圆,∠BAC=60°,;因为OB、OC是⊙O的半径,所以OB=OC,所以=,在中,若⊙O的半径OC为2,OB=OC=2,在中,BC="2"=【题目点拨】本题考查圆周角与圆心角、弦心距,要求考生熟悉圆周角与圆心角的关系,会求弦心距和弦长17、【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EA',然后利用“HL”证明△EDF和△EA'F全等,根据全等三角形对应边相等可证得DF=A'F;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列方程即可得解.【题目详解】∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△A'BE,∴AE=EA',AB=BA',∴ED=EA',∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EA'F=90°,∵在Rt△EDF和Rt△EA'F中,∵,∴Rt△EDF≌Rt△EA'F(HL),∴DF=FA',设DF=x,则BF=4+x,CF=4﹣x,在Rt△BCF中,62+(4﹣x)2=(4+x)2,解得:x=.故答案为:.【题目点拨】本题主要考查折叠的性质与勾股定理,利用勾股定理列出方程,是解题的关键.18、2【分析】设袋子中红球有x个,求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【题目详解】设袋子中红球有x个,根据题意,得:,解得:x=2,所以袋中红球有2个,故答案为2【题目点拨】此题考查概率公式的应用,解题关键在于求出摸到红球的频率三、解答题(共66分)19、(1)甲、乙工程队每天能完成绿化的面积分别是、;(2);(3)安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.【分析】(1)设乙工程队每天能完成绿化的面积是m2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=2400,整理得:y=-2x+48,即可解答;(3)根据甲乙两队施工的总天数不超过30天,得到x≥18,设施工总费用为w元,根据题意得:,根据一次函数的性质,即可解答.【题目详解】(1)设乙工程队每天能完成绿化面积是,根据题意得:,解得:,经检验,是原方程的解,则甲工程队每天能完成绿化的面积是答:甲、乙工程队每天能完成绿化的面积分别是、;(2)根据题意得:,整理得:,∴y与x的函数解析式为:.(3)∵甲乙两队施工的总天数不超过30天,

∴,∴,解得:,设施工总费用为元,根据题意得:,∵,∴随的增大而增大,当时,有最小值,最小值为万元,此时,,答:安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.【题目点拨】本题考查了分式方程、一元一次不等式和一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.掌握利用一次函数的增减性求最值的方法.20、小岛,间的距离为米.【分析】根据三角函数的定义解直角三角形【题目详解】解:在中,由题可知,∴.在中,由题可知.∵,∴.∴.答:小岛,间的距离为米.【题目点拨】本题考查了利用三角函数解实际问题,注意三角函数的定义,别混淆21、(1)x1=-3,x2=1;(2)x1=-1,x2=2【分析】(1)利用“十字相乘法”对等式的左边进行因式分解;又可以利用公式法解方程;(2)利用因式分解法解方程.【题目详解】(1)解一:(x+3)(x﹣1)=0解得:x1=﹣3,x2=1解二:a=1,b=2,c=﹣3x=解得:x=即x1=﹣3,x2=1.(2)x(x+1)﹣2(x+1)=0(x+1)(x﹣2)=0x1=﹣1,x2=2点睛:本题主要考查了因式分解法和公式法解一元二次方程的知识,解题的关键是掌握因式分解法解方程的步骤以及熟记求根公式.22、10%.【解题分析】试题分析:设这两年的平均增长率为x,根据等量关系“2010年的人均收入×(1+平均增长率)2=2012年人均收入”列方程即可.试题解析:设这两年的平均增长率为x,由题意得:12000(1+x)2=14520,解得:x答:这两年的平均增长率为10%.考点:1.一元二次方程的应用;2.增长率问题.23、(1)y=-x2+4x;(2)点C的坐标为(3,3),3;(3)点P的坐标为(2,4)或(3,3)【分析】(1)将点A、B的坐标代入即可求出解析式;(2)求出抛物线的对称轴,根据对称性得到点C的坐标,再利用面积公式即可得到三角形的面积;(3)先求出直线AB的解析式,过P点作PE∥y轴交AB于点E,设其坐标为P(a,-a2+4a),得到点E的坐标为(a,-a+4),求出线段PE,即可根据面积相加关系求出a,即可得到点P的坐标.【题目详解】(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得,得,∴抛物线的解析式为y=-x2+4x;(2)∵,∴对称轴是直线x=2,∵B(1,3),点C、B关于抛物线的对称轴对称,∴点C的坐标为(3,3),BC=2,点A的坐标是(4,0),BH⊥x轴,∴S△ABC==;(3)设直线AB的解析式为y=mx+n,将B,A两点的坐标代入得,解得,∴y=-x+4,过P点作PE∥y轴交AB于点E,P点在抛物线y=-x2+4x的AB段,设其坐标为(a,-a2+4a),其中1<a<4,则点E的坐标为(a,-a+4),∴PE=(-a2+4a)-(-a+4)=-a2+5a-4,∴S△ABP=S△PEB+S△PEA=×PE×3=(-a2+5a-4)=,得a1=2,a2=3,P1(2,4),P2(3,3)即点C,综上所述,当△ABP的面积为3时,点P的坐标为(2,4)或(3,3).【题目点拨】此题是二次函数的综合题,考查待定系数法,对称点的性质,图象与坐标轴的交点,动点问题,是一道比较基础的综合题.24、(1)见解析;(2)见解析.【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【题目详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【题目点拨】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.25、(1)AD=9;(2)AD=【分析】(1)连接BE,证明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)连接BE,证明△ACD∽△BCE,得到,求出BE的长,得到AD的长.【题目详解】解:(1)如图1,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论