上海市徐汇区南洋模范中学2024届高一数学第一学期期末监测试题含解析_第1页
上海市徐汇区南洋模范中学2024届高一数学第一学期期末监测试题含解析_第2页
上海市徐汇区南洋模范中学2024届高一数学第一学期期末监测试题含解析_第3页
上海市徐汇区南洋模范中学2024届高一数学第一学期期末监测试题含解析_第4页
上海市徐汇区南洋模范中学2024届高一数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市徐汇区南洋模范中学2024届高一数学第一学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列区间中,函数单调递增的区间是()A. B.C. D.2.已知集合P=,,则PQ=()A. B.C. D.3.下列命题中是真命题的是()A.“”是“”的充分条件B.“”是“”的必要条件C.“”是“”的充要条件D.“”是“”的充要条件4.若===1,则a,b,c的大小关系是()A.a>b>c B.b>a>cC.a>c>b D.b>c>a5.已知角的终边经过点,则的值为A. B.C. D.6.设集合A={1,3,5},B={1,2,3},则A∪B=()A. B.C.3, D.2,3,7.已知是减函数,则a的取值范围是()A. B.C. D.8.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视图是一个半圆内切于边长为的正方形.若该机器零件的表面积为,则的值为A.4 B.2C.8 D.610.下列四组函数中,表示相同函数的一组是()A.,B.,C.,D.,二、填空题:本大题共6小题,每小题5分,共30分。11.命题的否定是__________12.已知函数若,则的值为______13.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.14.从含有两件正品和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,取出的两件产品都是正品的概率为__________.15.直线与直线平行,则实数的值为_______.16.如图,在空间四边形中,平面平面,,,且,则与平面所成角的度数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地政府为增加农民收人,根据当地地域特点,积极发展农产品加工业.经过市场调查,加工某农产品需投入固定成本3万元,每加工吨该农产品,需另投入成本万元,且已知加工后的该农产品每吨售价为10万元,且加工后的该农产品能全部销售完.(1)求加工后该农产品的利润(万元)与加工量(吨)的函数关系式;(2)求加工后的该农产品利润的最大值.18.对于函数,若在定义域内存在实数,满足,则称函数为“局部中心函数”.(1)已知二次函数,试判断是否为“局部中心函数”.并说明理由;(2)若是定义域为R上的“局部中心函数”,求实数m的取值范围.19.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并证明20.已知由方程kx2-8x+16=0的根组成的集合A只有一个元素,试求实数k的值21.已知函数(1)当时,在上恒成立,求的取值范围;(2)当时,解关于的不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】解不等式,利用赋值法可得出结论.【题目详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【题目点拨】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数2、B【解题分析】根据集合交集定义求解.【题目详解】故选:B【题目点拨】本题考查交集概念,考查基本分析求解能力,属基础题.3、B【解题分析】利用充分条件、必要条件的定义逐一判断即可.【题目详解】因为是集合A的子集,故“”是“”的必要条件,故选项A为假命题;当时,则,所以“”是“”的必要条件,故选项B为真命题;因为是上的减函数,所以当时,,故选项C为假命题;取,,但,故选项D为假命题.故选:B.4、D【解题分析】由求出的值,由求得的值,由=1求得的值,从而可得答案【题目详解】由,可得故,由,可得,故,由,可得,故,故选D【题目点拨】本题主要考查对数的定义,对数的运算性质的应用,属于基础题.5、C【解题分析】因为点在单位圆上,又在角的终边上,所以;则;故选C.6、D【解题分析】直接利用集合运算法则得出结果【题目详解】因A=(1,3,5},B={1,2,3},所以则A∪B=2,3,,故选D【题目点拨】本题考查集合运算,注意集合中元素的的互异性,无序性7、D【解题分析】利用分段函数在上单调递减的特征直接列出不等式组求解即得.【题目详解】因函数是定义在上的减函数,则有,解得,所以的取值范围是.故选:D8、D【解题分析】分别取特殊值验证充分性和必要性不满足,即可得到答案.【题目详解】充分性:取,满足“”,但是“”不成立,即充分性不满足;必要性:取,满足“”,但是“”不成立,即必要性不满足;所以“”是“”的既不充分也不必要条件.故选:D9、A【解题分析】几何体为一个正方体与四分之一个球的组合体,所以表面积为,选A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用10、C【解题分析】根据相同函数的判断原则进行定义域的判断即可选出答案.【题目详解】解:由题意得:对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误;对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误;对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】根据存在量词的命题的否定为全称量词命题即可得解;【题目详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:12、4【解题分析】根据自变量所属的区间,代入相应段的解析式求值即可.【题目详解】由题意可知,,解得,故答案为:413、【解题分析】设参加数学、物理、化学小组的同学组成的集合分别为,、,根据容斥原理可求出结果.【题目详解】设参加数学、物理、化学小组的同学组成的集合分别为,、,同时参加数学和化学小组的人数为,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为,如图所示:由图可知:,解得,所以同时参加数学和化学小组有人.故答案为:.14、【解题分析】基本事件总数6,取出的两件产品都是正品包含的基本事件个数2,由此能求出取出的两件产品都是正品的概率.【题目详解】从含有两件正品和一件次品的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,共包含,,,,,6个基本事件,取出的两件产品都是正品包含,2个基本事件,∴取出的两件产品都是正品的概率为,故答案为:.15、【解题分析】根据直线一般式,两直线平行则有,代入即可求解.【题目详解】由题意,直线与直线平行,则有故答案为:【题目点拨】本题考查直线一般式方程下的平行公式,属于基础题.16、【解题分析】首先利用面面垂直转化出线面垂直,进一步求出线面的夹角,最后通过解直角三角形求出结果.【题目详解】取BD中点O,连接AO,CO.因为AB=AD,所以,又平面平面,所以平面.因此,即为AC与平面所成的角,由于,,所以,又,所以【题目点拨】本题主要考查直线与平面所成的角,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值6万元【解题分析】(1)根据该农产品每吨售价为10万元,需投入固定成本3万元,每加工吨该农产品,需另投入成本万元求解;(2)根据(1)的结论,分和,利用二次函数和基本不等式求解.【小问1详解】解:当时,.当时,.故加工后该农产品的利润(万元)与加工量(吨)的函数关系式为:【小问2详解】当时,,所以时,取得最大值5万元;当时,因为,当且仅当时,等号成立,所以当时,取得最大值6万元,因为,所以当时,取得最大值6万元.18、(1)函数为“局部中心函数”,理由见解析;(2).【解题分析】(1)判断是否为“局部中心函数”,即判断方程是否有解,若有解,则说明是“局部中心函数”,否则说明不是“局部中心函数”;(2)条件是定义域为上的“局部中心函数”可转化为方程有解,再利用整体思路得出结果.【题目详解】解:(1)由题意,(),所以,,当时,解得:,由于,所以,所以为“局部中心函数”.(2)因为是定义域为上的“局部中心函数”,所以方程有解,即在上有解,整理得:,令,,故题意转化为在上有解,设函数,当时,在上有解,即,解得:;当时,则需要满足才能使在上有解,解得:,综上:,即实数m的取值范围.19、(1)(2)函数为定义域上的偶函数,证明见解析【解题分析】(1)由题意可得,解不等式即可求出结果;(2)令,证得,根据偶函数的定义即可得出结论.【小问1详解】由,则有,得.则函数的定义域为【小问2详解】函数为定义域上的偶函数令,则,又则,有成立则函数为在定义域上的偶函数20、k=0或1.【解题分析】讨论当k=0时和当k≠0时,两种情况,其中当k≠0时,只需Δ=64-64k=0即可.试题解析:当k=0时,原方程变为-8x+16=0,所以x=2,此时集合A中只有一个元素2.当k≠0时,要使一元二次方程kx2-8x+16=0有一个实根,需Δ=64-64k=0,即k=1.此时方程的解为x1=x2=4,集合A中只有一个元素4.综上可知k=0或1.21、(1)(2)答案不唯一,具体见解析【解题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论