江苏省射阳县实验初中2024届高一数学第一学期期末复习检测试题含解析_第1页
江苏省射阳县实验初中2024届高一数学第一学期期末复习检测试题含解析_第2页
江苏省射阳县实验初中2024届高一数学第一学期期末复习检测试题含解析_第3页
江苏省射阳县实验初中2024届高一数学第一学期期末复习检测试题含解析_第4页
江苏省射阳县实验初中2024届高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省射阳县实验初中2024届高一数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义域为的函数满足,且,若,则()A. B.C. D.2.的值等于A. B.C. D.3.若,,且,,则函数与函数在同一坐标系中的图像可能是()A. B.C. D.4.下列函数中与函数相等的是A. B.C. D.5.为了得到函数的图象,只需将函数的图象上所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.已知集合,则A. B.C.( D.)7.化为弧度是()A. B.C. D.8.y=sin(2x-)-sin2x的一个单调递增区间是A. B.C. D.9.在中,若,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形10.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具有性质的函数的个数为____________12.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.13.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________.14.用表示函数在闭区间上的最大值.若正数满足,则的最大值为__________15.已知是第四象限角,,则______16.已知函数的零点为,不等式的最小整数解为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知两个非零向量和不共线,,,(1)若,求的值;(2)若A、B、C三点共线,求的值18.(1)已知是角终边上一点,求,,的值;(2)已知,求下列各式的值:①;②19.如图,在直三棱柱中,已知,,设的中点为,求证:(1);(2).20.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值.21.已知集合,集合.(1)求.(2)求,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据,,得到求解.【题目详解】因为,,所以,所以,所以,所以,,故选:A2、C【解题分析】因为,所以可以运用两角差的正弦公式、余弦公式,求出的值.【题目详解】,,,故本题选C.【题目点拨】本题考查了两角差的正弦公式、余弦公式、以及特殊角的三角函数值.其时本题还可以这样解:,.3、B【解题分析】结合指数函数、对数函数的图象按和分类讨论【题目详解】对数函数定义域是,A错;C中指数函数图象,则,为减函数,C错;BD中都有,则,因此为增函数,只有B符合故选:B4、C【解题分析】对于选项A,D对应的函数与函数的对应法则不同,对于选项B对应的函数与函数的定义域不同,对于选项C对应的函数与函数的定义域、对应法则相同,得解.【题目详解】解:对于选项A,等价于,即A不符合题意,对于选项B,等价于,即B不符合题意,对于选项C,等价于,即C符合题意,对于选项D,,显然不符合题意,即D不符合题意,故选C.【题目点拨】本题考查了同一函数的判断、函数的对应法则及定义域,属基础题.5、A【解题分析】化简函数的解析式,根据函数图象变换的知识确定正确选项.【题目详解】,将函数的图象上所有的点向左平移个单位,得到.故选:A6、C【解题分析】因为所以,故选.考点:1.集合的基本运算;2.简单不等式的解法.7、D【解题分析】根据角度制与弧度制的互化公式,正确运算,即可求解.【题目详解】根据角度制与弧度制的互化公式,可得.故选:D.8、B【解题分析】,由,得,,时,为,故选B9、D【解题分析】利用诱导公式和两角和差的正弦公式、正弦的二倍角公式化简已知条件,再结合角的范围即可求解.【题目详解】因为,由可得:,即,所以,所以,所以或,因为,,所以或,所以的形状为等腰三角形或直角三角形,故选:D.10、D【解题分析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围.【题目详解】由题设,,易知:关于对称,又恒成立,当时,,则,可得;当时,,则,可得;当,即时,,则,即,可得;当,即时,,则,即,可得;综上,.故选:D.【题目点拨】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得【题目详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在;②假设存在不相等,,使得,即,得,矛盾,故不存在;③函数为偶函数,,令,,则,存在故答案为:【题目点拨】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题.12、9【解题分析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.13、【解题分析】根据给定条件,分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答.【题目详解】当时,,则函数在上单调递减,函数值从减到0,而是R上的偶函数,则函数在上单调递增,函数值从0增到,因,有,则函数的周期是2,且有,即图象关于直线对称,令,则函数在上递增,在上递减,值域为,且图象关于直线对称,在同一坐标系内作出函数和的图象,如图,观察图象得,函数和在上的图象有8个交点,且两两关于直线对称,所以方程在区间上所有解的和为.故答案为:【题目点拨】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.14、【解题分析】对分类讨论,利用正弦函数的图象求出和,代入,解出的范围,即可得解.【题目详解】当,即时,,,因为,所以不成立;当,即时,,,不满足;当,即时,,,由得,得,得;当,即时,,,由得,得,得,得;当,即时,,,不满足;当,即时,,,不满足.综上所述:.所以得最大值为故答案为:【题目点拨】关键点点睛:对分类讨论,利用正弦函数的图象求出和是解题关键.15、【解题分析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【题目详解】因为是第四象限角,,则,所以,.故答案为:.16、8【解题分析】利用单调性和零点存在定理可知,由此确定的范围,进而得到.【题目详解】函数为上的增函数,,,函数的零点满足,,的最小整数解故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-1(2)-1【解题分析】(1)根据即可得出,,由即可得出1+k=0,从而求出k的值;(2)根据A,B,C三点共线即可得出,从而可得出,根据平面向量基本定理即可得出,解出k即可【题目详解】解:(1);∴=;∵;∴k+1=0;∴k=-1;(2)∵A,B,C三点共线;∴;∴;∴;∵不共线;∴由平面向量基本定理得,;解得k=-1【题目点拨】本题考查向量减法的几何意义,以及向量的数乘运算,平面向量基本定理18、(1);;;(2)①;②【解题分析】(1)利用三角函数的定义即可求解.(2)求出,再利用齐次式即可求解.【题目详解】(1)是角终边上一点,则,,.(2)由,则,①.②19、⑴见解析;⑵见解析.【解题分析】(1)要证明线面平行,转证线线平行,在△AB1C中,DE为中位线,易得;(2)要证线线垂直,转证线面垂直平面,易证,从而问题得以解决.试题解析:⑴在直三棱柱中,平面,且矩形是正方形,为的中点,又为的中点,,又平面,平面,平面⑵在直三棱柱中,平面,平面,又,平面,平面,,平面,平面,矩形是正方形,,平面,,平面又平面,.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.20、(1);(2)最大值为,最小值为.【解题分析】(1)展开两角差的余弦,再由辅助角公式化简,利用周期公式求周期;(2)由x的范围求出相位的范围,再由正弦函数的有界性可求函数在区间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论