2024届黑龙江省牡丹江市海林朝鲜族中学高一上数学期末联考试题含解析_第1页
2024届黑龙江省牡丹江市海林朝鲜族中学高一上数学期末联考试题含解析_第2页
2024届黑龙江省牡丹江市海林朝鲜族中学高一上数学期末联考试题含解析_第3页
2024届黑龙江省牡丹江市海林朝鲜族中学高一上数学期末联考试题含解析_第4页
2024届黑龙江省牡丹江市海林朝鲜族中学高一上数学期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省牡丹江市海林朝鲜族中学高一上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则三者的大小关系是A. B.C. D.2.已知当时,函数取最大值,则函数图象的一条对称轴为A. B.C. D.3.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个4.设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|5.若函数的三个零点分别是,且,则()A. B.C. D.6.设且,若对恒成立,则a的取值范围是()A. B.C. D.7.已知函数,则函数的零点所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)8.已知,,则()A. B.C. D.9.设集合,则中元素的个数为()A.0 B.2C.3 D.410.函数的最大值为A.2 B.C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数和函数的图像相交于三点,则的面积为__________.12.大圆周长为的球的表面积为____________13.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________14.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.15.经过原点并且与直线相切于点的圆的标准方程是__________16.设为锐角,若,则的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合(1)求;(2)若,且,求实数的取值范围.18.在体育知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关篮球知识的问题,已知甲答题正确的概率是,乙答题错误的概率是,乙、丙两人都答题正确的概率是,假设每人答题正确与否是相互独立的(1)求丙答题正确的概率;(2)求甲、丙都答题错误,且乙答题正确的概率19.设函数的定义域为集合的定义域为集合(1)当时,求;(2)若“”是“”的必要条件,求实数的取值范围20.已知函数.(1)若,求的定义域(2)若为奇函数,求a值.21.已知函数(1)求函数的单调递增区间;(2)若,求函数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】因为<,所以,选A.2、A【解题分析】由最值确定参数a,再根据正弦函数性质确定对称轴【题目详解】由题意得因此当时,,选A.【题目点拨】本题考查三角函数最值与对称轴,考查基本分析求解能力,属基础题.3、B【解题分析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【题目详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【题目点拨】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题4、B【解题分析】利用向量共线定理、垂直数量积为0来综合判断.【题目详解】A:当、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B5、D【解题分析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【题目详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【题目点拨】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理6、C【解题分析】分,,作与的图象分析可得.【题目详解】当时,由函数与的图象可知不满足题意;当时,函数单调递减,由图知,要使对恒成立,只需满足,得.故选:C注意事项:

用黑色墨水的钢笔或签字笔将答案写在答题卡上.

本卷共9题,共60分.7、B【解题分析】先分析函数的单调性,进而结合零点存在定理,可得函数在区间上有一个零点【题目详解】解:函数在上为增函数,又(1),(2),函数在区间上有一个零点,故选:8、C【解题分析】求出集合,,直接进行交集运算即可.【题目详解】,,故选:C【题目点拨】本题考查集合的交集运算,指数函数的值域,属于基础题.9、B【解题分析】先求出集合,再求,最后数出中元素的个数即可.【题目详解】因集合,,所以,所以,则中元素的个数为2个.故选:B10、B【解题分析】根据两角和的正弦公式得到函数的解析式,结合函数的性质得到结果.【题目详解】函数根据两角和的正弦公式得到,因为x根据正弦函数的性质得到最大值为.故答案为B.【题目点拨】这个题目考查了三角函数的两角和的正弦公式的应用,以及函数的图像的性质的应用,题型较为基础.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】解出三点坐标,即可求得三角形面积.【题目详解】由题:,,所以,,所以,.故答案为:12、【解题分析】依题意可知,故求得表面积为.13、【解题分析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解.【题目详解】由题意,得,又因为在上是增函数,所以当时,有,所以在时恒成立,即在时恒成立,转化为在时恒成立,所以或或解得:或或,即实数的取值范围是【题目点拨】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题.14、【解题分析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【题目详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.15、【解题分析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可16、【解题分析】由条件求得的值,利用二倍角公式求得和的值,再根据,利用两角差的正弦公式计算求得结果【题目详解】∵为锐角,,∴,∴,故,故答案为.【题目点拨】本题主要考查同角三角函数的基本关系、两角和差的正弦公式、二倍角公式的应用,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】分析:(1)先解指数不等式得集合B,再根据补集以及交集定义求结果,(2)根据得,再根据数轴确定实数的取值范围.详解:(1)由,得:.由则:,所以:,(2)由:,又,当时:,当时:,综上可得:,即.点睛:将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解18、(1)(2)【解题分析】(1)设丙答对这道题的概率为,利用对立事件和相互独立事件概率公式,即可求解;(2)由相互独立事件概率乘法公式,即可求解.【小问1详解】记甲、乙、丙3人独自答对这道题分别为事件,设丙答对题的概率,乙答对题的概率,由于每人回答问题正确与否是相互独立的,因此是相互独立事件.根据相互独立事件同时发生的概率公式,得,解得,所以丙对这道题的概率为【小问2详解】甲、丙都答题错误,且乙答题正确的概率为甲、乙、丙三人都回答错误的概率为19、(1)(2)【解题分析】(1)求出集合A,B,根据集合的补集、交集运算求解即可;(2)由必要条件转化为集合间的包含关系,建立不等式求解即可.【小问1详解】由,解得或,所以当时,由,即,解得,所以.所以小问2详解】由(1)知,由,即,解得,所以因为“”是“”的必要条件,所以.所以,解得所以实数的取值范围是20、(1);(2).【解题分析】(1)根据定义域的求法,求得的定义域.(2)根据奇函数的定义域关于原点对称求得,判断为奇函数,从而确定的值.【题目详解】(1)依题意,,所以的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论