




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省浙大附中2024届高一数学第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若,且当时,则的取值范围是A. B.C. D.2.已知则()A. B.C. D.3.若,且,那么角的终边落在A.第一象限 B.第二象限C.第三象限 D.第四象限4.在正方体中,异面直线与所成的角为()A.30° B.45°C.60° D.90°5.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.16.已知,,函数的零点为c,则()A.c<a<b B.a<c<bC.b<a<c D.a<b<c7.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.8.不等式的解集为,则函数的图像大致为()A. B.C. D.9.如图,一个半径为3m的筒车按逆时针方向每分转1.5圈,筒车的轴心O距离水面的高度为2.2m,设筒车上的某个盛水筒P到水面的距离为d(单位:m)(在水面下则d为负数),若从盛水筒P刚浮出水面时开始计算时间,则d与时间t(单位:s)之间的关系为,则其中A,,K的值分别为()A.6,,2.2 B.6,,2.2C.3,,2.2 D.3,,2.210.“”是“幂函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.命题“,”的否定为____.12.已知,,,则的最大值为___________.13.已知函数,若函数在区间内有3个零点,则实数的取值范围是______14.设函数的图象关于y轴对称,且其定义域为,则函数在上的值域为________.15.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.16.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.若,求实数a的取值范围.18.已知函数,且(1)求f(x)的解析式;(2)判断f(x)在区间(0,1)上的单调性,并用定义法证明19.已知函数(1)求函数的对称轴和单调减区间;(2)当时,函数的最大值与最小值的和为2,求a20.如图,在四棱锥中,,是以为斜边的等腰直角三角形,且.(1)证明:平面平面.(2)若四棱锥的体积为4,求四面体的表面积.21.设函数.(1)求的最小正周期和最大值;(2)求的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】首先确定函数的解析式,然后确定的取值范围即可.【题目详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.本题选择B选项.【题目点拨】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.2、D【解题分析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β)【题目详解】∵∴∴,∴,∴故选:D3、C【解题分析】由根据三角函数在各象限的符号判断可能在的象限,再利用两角和的正弦公式及三角函数的图象由求出的范围,两范围取交集即可.【题目详解】,在第二或第三象限,,即,或,解得或,又在第二或第三象限,在第三象限.故选:C【题目点拨】本题考查三角函数值在各象限的符号、正弦函数的图象与性质,属于基础题.4、C【解题分析】首先由可得是异面直线和所成角,再由为正三角形即可求解.【题目详解】连接因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【题目点拨】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.5、B【解题分析】根据解析式可直接求出最小正周期.【题目详解】函数的最小正周期为.故选:B.6、B【解题分析】由函数零点存在定理可得,又,,从而即可得答案.【题目详解】解:因为在上单调递减,且,,所以的零点所在区间为,即.又因为,,所以a<c<b故选:B.7、D【解题分析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.8、C【解题分析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【题目详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C9、D【解题分析】根据实际含义分别求的值即可.【题目详解】振幅即为半径,即;因为逆时针方向每分转1.5圈,所以;;故选:D.10、C【解题分析】根据函数的奇偶性的定义和幂函数的概念,结合充分条件、必要条件的判定方法,即可求解.详解】由,即,解得或,当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数;当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数,所以充分性成立;反之:幂函数,则满足,解得或或,当时,,此时函数为偶函数;当时,,此时函数为偶函数,当时,,此时函数为奇函数函数,综上可得,实数或,即必要性成立,所以“”是“幂函数为偶函数”的充要条件.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解题分析】利用全称量词命题的否定可得出结论.【题目详解】命题“,”为全称量词命题,该命题的否定为“,”.故答案为:,.12、【解题分析】由题知,进而令,,再结合基本不等式求解即可.【题目详解】解:,当时取等,所以,故令,则,所以,当时,等号成立.所以的最大值为故答案为:13、【解题分析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【题目详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【题目点拨】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题14、【解题分析】∵函数的图象关于y轴对称,且其定义域为∴,即,且为偶函数∴,即∴∴函数在上单调递增∴,∴函数在上的值域为故答案为点睛:此题主要考查函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是熟练掌握二次函数的性质,本题理解对称性很关键15、【解题分析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【题目详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:16、【解题分析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】求函数定义域得,解不等式得,进而得,再结合题意,分和两种情况求解即可.【题目详解】解:由,解得,所以,因为,解得,所以所以因为,所以,当时,,解得时,可得,解得:综上可得:实数a的取值范围是18、(1)(2)f(x)在(0,1)上单调递减,证明见解析.【解题分析】(1)根据即可求出a=b=1,从而得出;(2)容易判断f(x)在区间(0,1)上单调递减,根据减函数的定义证明:设x1,x2∈(0,1),并且x1<x2,然后作差,通分,得出,根据x1,x2∈(0,1),且x1<x2说明f(x1)>f(x2)即可【题目详解】解:(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在区间(0,1)上单调递减,证明如下:设x1,x2∈(0,1),且x1<x2,则:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上单调递减【题目点拨】本题考查减函数的定义,根据减函数的定义证明一个函数是减函数的方法和过程,清楚的单调性19、(1)对称轴为,单调减区间(2)【解题分析】(1)先利用三角恒等变换化简解析式,再由正弦函数的性质求解即可;(2)由正弦函数的性质得出函数的最大值与最小值,进而得出.【小问1详解】由可得,函数的对称轴为由可得,即单调减区间为【小问2详解】20、(1)见解析(2)9【解题分析】(1)由已知可得,根据线面垂直的判定得平面,进而可得平面,由面面垂直的判定可得证.(2)根据四棱锥的体积可得.过作于,连接,可证得平面,.可求得,可求得四面体的表面积.【题目详解】(1)证明:∵是以为斜边的等腰直角三角形,∴,又,∴平面,则.又,∴平面.又平面,∴平面平面.(2)解:∵,且,∴.∴.过作于,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件开发项目外包及委托开发合同协议
- 基于人工智能的医疗辅助诊断系统研发与应用
- 商业场所清洁维护服务合同
- 头面部烧伤护理
- 游黄龙洞450字9篇
- 下肢DVT护理指南
- 康复与训练模考试题含答案(附解析)
- 2024年成考真题练习之教育理论(专升本)(含答案)
- 采煤机司机学习题库带答案
- 建筑安全知识竞赛试题及答案
- 2024湖北黄冈国有资本投资运营集团有限公司招聘笔试参考题库附带答案详解
- 危大工程动态判定表
- 血管活性药物静脉输注护理团体解读
- 全国各地行政区划代码及身份证号前6位对照表
- 绳索救援(课堂)课件
- 库伦分析法课件
- 危险源识别与风险评估说明
- 文本信息加工和表达
- ks-s3002sr2腔全自动清洗机规格书megpie
- 厂房改造工程施工组织设计
- 2023年锦州师范高等专科学校高职单招(语文)试题库含答案解析
评论
0/150
提交评论