




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省承德一中2024届高一上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设a为实数,“”是“对任意的正数x,”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件2.如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角()A.90° B.60°C.45° D.30°3.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且4.在下列区间中函数的零点所在的区间为()A. B.C. D.5.如图,在正四棱柱中,,点是平面内的一个动点,则三棱锥的正视图和俯视图的面积之比的最大值为A B.C. D.6.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.7.每天,随着清晨第一缕阳光升起,北京天安门广场都会举行庄严肃穆的升旗仪式,每天升国旗的时间随着日出时间的改变而改变,下表给出了2020年1月至12月,每个月第一天北京天安门广场举行升旗礼的时间:1月2月3月4月5月6月7月8月9月10月11月12月7:367:236:485:595:154:484:495:125:416:106:427:16若据此以月份(x)为横轴、时间(y)为纵轴,画出散点图,并用曲线去拟合这些数据,则适合模拟的函数模型是()A. B.且a≠1)C. D.且a≠1)8.直线的斜率为,在y轴上的截距为b,则有()A. B.C. D.9.已知集合,,则A. B.C. D.10.下列函数,其中既是偶函数又在区间上单调递减的函数为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________12.若,则的值为______13.若,则___________14.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.15.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______16.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.18.定义:若对定义域内任意x,都有(a为正常数),则称函数为“a距”增函数(1)若,(0,),试判断是否为“1距”增函数,并说明理由;(2)若,R是“a距”增函数,求a的取值范围;(3)若,(﹣1,),其中kR,且为“2距”增函数,求的最小值19.已知函数,.(1)当时,解关于的方程;(2)当时,函数在有零点,求实数的取值范围.20.求满足下列条件的直线方程.(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.21.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据题意利用基本不等式分别判断充分性和必要性即可.【题目详解】若,因为,则,当且仅当时等号成立,所以充分性成立;取,因为,则,当且仅当时等号成立,即时,对任意的正数x,,但,所以必要性不成立,综上,“”是“对任意的正数x,”的充分非必要条件.故选:A.2、B【解题分析】将原图还原到正方体中,连接SC,AS,可确定(或其补角)是PB与AC所成的角.【题目详解】因为ABCD为正方形,PA⊥平面ABCD,PA=AB,可将原图还原到正方体中,连接SC,AS,则PB平行于SC,如图所示.∴(或其补角)是PB与AC所成的角,∵为正三角形,∴,∴PB与AC所成角为.故选:B.3、A【解题分析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【题目详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【题目点拨】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题4、A【解题分析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【题目详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.5、B【解题分析】由题意可知,P在正视图中的射影是在C1D1上,AB在正视图中,在平面CDD1C1上的射影是CD,P的射影到CD的距离是AA1=2,所以三棱锥P﹣ABC的正视图的面积为三棱锥P﹣ABC的俯视图的面积的最小值为,所以三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为,故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.6、A【解题分析】由已知可作出函数的大致图象,结合图象可得到答案.【题目详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【题目点拨】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.7、C【解题分析】画出散点图,根据图形即可判断.【题目详解】画出散点图如下,则根据散点图可知,可用正弦型曲线拟合这些数据,故适合.故选:C.8、A【解题分析】将直线方程化为斜截式,由此求得正确答案.【题目详解】,所以.故选:A9、A【解题分析】由得,所以;由得,所以.所以.选A10、A【解题分析】分别考查函数的奇偶性和函数的单调性即可求得最终结果.【题目详解】逐一考查所给的函数的性质:A.,函数为偶函数,在区间上单调递减;B.,函数为非奇非偶函数,在区间上单调递增;C.,函数为奇函数,在区间上单调递减;D.,函数为偶函数,在区间上单调递增;据此可得满足题意的函数只有A选项.本题选择A选项.【题目点拨】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【题目详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:12、0【解题分析】由,得到∴sin∴2sin+4两边都除以,得:2tan故答案为013、【解题分析】只需对分子分母同时除以,将原式转化成关于的表达式,最后利用方程思想求出.再利用二倍角的正切公式,即可求得结论【题目详解】解:,即,故答案为:【题目点拨】本题考查同角三角函数的关系,考查二倍角的正切公式,正确运用公式是关键,属于基础题14、【解题分析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【题目详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【题目点拨】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角15、【解题分析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【题目详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【题目点拨】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题16、(1)(2),【解题分析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)这样规定公平,详见解析【解题分析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.【题目详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y.用表示抽取结果,可得,则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A,则,事件A由4个基本事件组成,故所求概率.(2)设“甲获胜”为事件B,“乙获胜”为事件C,则,.可得,即甲获胜的概率是,乙获胜的概率也是,所以这样规定公平.【题目点拨】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.18、(1)见解析;(2);(3).【解题分析】(1)利用“1距”增函数的定义证明即可;(2)由“a距”增函数的定义得到在上恒成立,求出a的取值范围即可;(3)由为“2距”增函数可得到在恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值【题目详解】(1)任意,,因为,,所以,所以,即是“1距”增函数(2).因为是“距”增函数,所以恒成立,因为,所以在上恒成立,所以,解得,因为,所以.(3)因为,,且为“2距”增函数,所以时,恒成立,即时,恒成立,所以,当时,,即恒成立,所以,得;当时,,得恒成立,所以,得,综上所述,得.又,因为,所以,当时,若,取最小值为;当时,若,取最小值.因为在R上是单调递增函数,所以当,的最小值为;当时的最小值为,即.【题目点拨】本题考查了函数的综合知识,考查了函数的单调性与最值,考查了恒成立问题,考查了分类讨论思想的运用,属于中档题19、(1);(2)【解题分析】(1)方程变成,令,化简解关于的一元二次方程,从而求出的值.(2)将零点转化为方程有实根,即时有解,令,,得:,从而得出取值范围.【题目详解】(1),令,则,解得,所以(2),时,设,,,对称轴为,时,,.20、(1)3x+4y+15=0(2)4x+3y-12=0或4x-3y+12=0.【解题分析】根据直线经过点A,再根据斜率等于直线3x+8y-1=0斜率2倍求出斜率的值,然后根据直线方程的点斜式写出直线的方程,化为一般式;直线经过点M(0,4),说明直线在y轴的截距为4,可设直线在x轴的截距为a,利用三角形周长为12列方程求出a,利用直线方程的截距式写出直线的方程,然后化为一般方程.试题解析:(1)因为3x+8y-1=0可化为y=-x+,所以直线3x+8y-1=0的斜率为-,则所求直线的斜率k=2×(-)=-又直线经过点(-1,-3),因此所求直线的方程为y+3=-(x+1),即3x+4y+15=0.(2)设直线与x轴的交点为(a,0),因为点M(0,4)在y轴上,所以由题意有4++|a|=12,解得a=±3,所以所求直线的方程为或,即4x+3y-12=0或4x-3y+12=0.【题目点拨】当直线经过点A,并给出斜率的条件时,根据斜率与已知直线的斜率关系求出斜率值,然后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年内分泌科甲状腺癌治疗方案选择考核试卷答案及解析
- 2025年康复儿科儿童康复治疗方案检验答案及解析
- 2025北京明天幼稚集团招聘考前自测高频考点模拟试题及答案详解一套
- 2025北京环卫集团招聘模拟试卷有完整答案详解
- 2025内蒙古赤峰市教育局赤峰蒙古族中学第二批次“绿色通道”引进高层次教师模拟试卷含答案详解
- 2025陕汽控股校园秋季校园招聘启动笔试历年参考题库附带答案详解
- 2025重庆千信外经贸集团有限公司总法律顾问招聘1人笔试历年参考题库附带答案详解
- 2025鄂尔多斯市交通投资有限公司招聘29人笔试历年参考题库附带答案详解
- 2025辽宁出版集团选聘18人笔试历年参考题库附带答案详解
- 2025贵州黔东南州凯里凯盛国有资本投资运营(集团)有限责任公司招聘工作人员缴费成功人数与招聘岗位人数达不到31比例岗位截笔试历年参考题库附带答案详解
- 设备对中培训
- 2025年新版汉字听写大赛题库及参考答案
- 路基分层自动版
- 2025年成人高考成考(专升本)教育理论试题与参考答案
- 2024电气装置安装工程电气设备交接试验标准
- 新建屋顶分布式光伏发电项目施工方案
- 内蒙古建筑图集 DBJ-T 03-76-2018 自保温砌块建筑构造图集
- 食品仓储业食品安全从业人员培训
- 教育强国建设的意义与路径探索
- 关于成立特种设备安全管理机构的通知(模板)
- 食品添加剂欧盟编码纯中文版
评论
0/150
提交评论