2024届湖北省武汉市外国语学校数学高一上期末统考模拟试题含解析_第1页
2024届湖北省武汉市外国语学校数学高一上期末统考模拟试题含解析_第2页
2024届湖北省武汉市外国语学校数学高一上期末统考模拟试题含解析_第3页
2024届湖北省武汉市外国语学校数学高一上期末统考模拟试题含解析_第4页
2024届湖北省武汉市外国语学校数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市外国语学校数学高一上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数零点所在区间为A. B.C. D.2.已知函数有唯一零点,则()A. B.C. D.13.如图,网格线上小正方形边长为1,粗线画出的是某几何体的三视图,那么该几何体的体积是A.3 B.2C. D.4.已知点P(1,a)在角α的终边上,tan=-则实数a的值是()A.2 B.C.-2 D.-5.已知,则=()A. B.C. D.6.设m,n是两条不同直线,,是两个不同的平面,下列命题正确的是A.,且,则B.,,,,则C.,,,则D.,且,则7.用斜二测画法画一个水平放置平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.8.如图,在正中,均为所在边的中点,则以下向量和相等的是()A B.C. D.9.已知定义在R上的函数,(e为自然对数的底数,),则()A.3 B.6C.3e D.与实数m的取值有关10.已知是空间中两直线,是空间中的一个平面,则下列命题正确的是()A.已知,若,则 B.已知,若,则C.已知,若,则 D.已知,若,则二、填空题:本大题共6小题,每小题5分,共30分。11.设为三个随机事件,若与互斥,与对立,且,,则_____________12.已知集合,,则集合中子集个数是____13.2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F遥十三运载火箭,在酒泉卫星发射中心点火升空.约582秒后,载人飞船与火箭成功分离,进入预定轨道,发射取得圆满成功.此次航天飞行任务中,火箭起到了非常重要的作用.火箭质量是箭体质量与燃料质量的和,在不考虑空气阻力的条件下,燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比.已知某火箭的箭体质量为mkg,当燃料质量为mkg时,该火箭的最大速度为2ln2km/s,当燃料质量为时,该火箭最大速度为2km/s.若该火箭最大速度达到第一宇宙速度7.9km/s,则燃料质量是箭体质量的_______________倍.(参考数据:)14.函数的定义域为_________15.已知函数,若函数恰有两个不同的零点,则实数的取值范围是_____16.如果满足对任意实数,都有成立,那么a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=lg(3+x)+lg(3-x)(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由18.已知函数(1)若是偶函数,求a的值;19.已知非空集合,非空集合(1)若,求(用区间表示);(2)若,求m的范围.20.已知向量m=(cos,sin),n=(2+sinx,2-cos),函数=m·n,x∈R.(1)求函数的最大值;(2)若且=1,求的值.21.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用零点存在性定理计算,由此求得函数零点所在区间.【题目详解】依题意可知在上为增函数,且,,,所以函数零点在区间.故选C.【题目点拨】本小题主要考查零点存在性定理的运用,属于基础题.2、B【解题分析】令,转化为有唯一零点,根据偶函数的对称性求解.【题目详解】因为函数,令,则为偶函数,因为函数有唯一零点,所以有唯一零点,根据偶函数对称性,则,解得,故选:B3、D【解题分析】由三视图可知该几何体为有一条侧棱与底面垂直的三棱锥.其体积为故选D4、C【解题分析】利用两角和的正切公式得到关于tanα的值,进而结合正切函数的定义求得a的值.【题目详解】∵,∴tanα=-2,∵点P(1,a)在角α的终边上,∴tanα==a,∴a=-2.故选:C.5、B【解题分析】根据两角和的正切公式求出,再根据二倍角公式以及同角三角函数的基本关系将弦化切,代入求值即可.【题目详解】解:解得故选:【题目点拨】本题考查三角恒等变换以及同角三角函数的基本关系,属于中档题.6、D【解题分析】对每一个命题逐一判断得解.【题目详解】对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面或相交,故A不正确;对于B,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以B不成立对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正确;对于D,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题D正确故答案为D【题目点拨】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.7、C【解题分析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【题目详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形面积为.故选:C8、D【解题分析】根据相等向量的定义直接判断即可.【题目详解】与方向不同,与均不相等;与方向相同,长度相等,.故选:D.9、B【解题分析】可证,从而可得正确的选项.【题目详解】因为,故,故,故选:B10、D【解题分析】A.n和m的方向无法确定,不正确;B.要得到,需要n垂直于平面内两条相交直线,不正确;C.直线n有可能在平面内,不正确;D.平行于平面的垂线的直线与此平面垂直,正确.【题目详解】A.一条直线与一个平面平行,直线的方向无法确定,所以不一定正确;B.一条直线与平面内两条相交直线垂直,则直线垂直于平面,无法表示直线n垂直于平面内两条相交直线,所以不一定正确;C.直线n有可能在平面内,所以不一定正确;D.,则直线n与m的方向相同,,则,正确;故选D【题目点拨】本题考查了直线与平面的位置关系的判断,遇到不正确的命题画图找出反例即可.本题属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由与对立可求出,再由与互斥,可得求解.【题目详解】与对立,,与互斥,故答案为:.12、4【解题分析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【题目详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【题目点拨】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.13、51【解题分析】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,根据条件列方程求出k值,再设当该火箭最大速度达到第--宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,根据题中数据再列方程可得a值.【题目详解】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,则,解得,设当该火箭最大速度达到第一宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,则,得,则燃料质量是箭体质量的51倍故答案为:51.14、【解题分析】根据被开放式大于等于零和对数有意义,解对数不等式得到结果即可.【题目详解】∵函数∴x>0且,∴∴函数的定义域为故答案为【题目点拨】本题考查了根据函数的解析式求定义域的应用问题,是基础题目15、【解题分析】题目转化为,画出函数图像,根据图像结合函数值计算得到答案.详解】,,即,画出函数图像,如图所示:,,根据图像知:.故答案为:16、【解题分析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【题目详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)偶函数,理由详见解析【解题分析】(1)求定义域,通常就是求使函数式有意义的自变量取值集合,所以只要满足各项都有意义即可,对数型的函数求值域,关键求出真数部分的取值范围就可以了;(2)判断函数奇偶性,就是利用奇偶性定义判断即可试题解析:(1)由函数式可得又所以值域为(2)由(1)可知定义域关于原点对称所以原函数为偶函数考点:1.求复合函数的定义域、值域;2.用定义判断函数奇偶性18、(1)0(2)【解题分析】(1)由偶函数的定义得出a的值;(2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围【小问1详解】因为是偶函数,所以,即,故【小问2详解】由题意知在上恒成立,则,又因为,所以,则.令,则,可得,又因为,当且仅当时,等号成立,所以,即a的取值范围是19、(1)(2)【解题分析】(1)分别解出集合A、B,再求;(2)由可得,列不等式即可求出m的范围.【小问1详解】由不等式的解为,即.由,即【小问2详解】由可知,,只需解得.即m的范围为.20、(1)f(x)的最大值是4(2)-【解题分析】(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【题目详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=.又因为x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【题目点拨】本题考查平面向量的综合题21、(1);(2);(3)25.【解题分析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【题目详解】(1)由图可知,,,,设所在直线方程为,把代入得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论