




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙自治区乌兰察布市集宁二中2024届数学高一上期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义域为R的函数,若关于的方程恰有5个不同的实数解,则=A.0 B.C. D.12.已知三个函数,,的零点依次为、、,则A. B.C. D.3.已知函数是定义域为R的偶函数,且在上单调递减,则不等式的解集为A. B.C. D.4.在平行四边形中,设,,,,下列式子中不正确的是()A. B.C. D.5.已知条件,条件,则p是q的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.某组合体的三视图如下,则它的体积是A. B.C. D.7.设,,若,则ab的最小值是()A.5 B.9C.16 D.258.设,且,则()A. B.10C.20 D.1009.若直线与圆交于两点,关于直线对称,则实数的值为()A. B.C. D.10.如图,点,,分别是正方体的棱,的中点,则异面直线和所成的角是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解在内,则的取值范围是___________.12.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.13.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.14.已知函数,若关于x的方程有两个不同的实根,则实数m的取值范围是______15.函数,则________16.若,则实数的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.参加劳动是学生成长的必要途径,每个孩子都要抓住日常生活中的劳动实践机会,自觉参与、自己动手,坚持不懈进行劳动,掌握必要的劳动技能.在劳动中接受锻炼、磨炼意志,培养正确的劳动价值观和良好的劳动品质.大家知道,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,在实验基础上现作如下假定:用单位的水清洗1次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数(1)①试解释与的实际意义;②写出函数应该满足的条件或具有的性质(写出至少2条,不需要证明);(2)现有单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由18.已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域19.已知为奇函数,为偶函数,且.(1)求及的解析式及定义域;(2)如果函数,若函数有两个零点,求实数的取值范围.20.已知集合,集合.(1)若,求和(2)若,求实数的取值范围.21.已知函数,当时,取得最小值(1)求a的值;(2)若函数有4个零点,求t的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】本题考查学生的推理能力、数形结合思想、函数方程思想、分类讨论等知识如图,由函数的图象可知,若关于的方程恰有5个不同的实数解,当时,方程只有一根为2;当时,方程有两不等实根(),从而方程,共有四个根,且这四个根关于直线对称分布,故其和为8.从而,,选C【点评】本题需要学生具备扎实的基本功,难度较大2、C【解题分析】令,得出,令,得出,由于函数与的图象关于直线对称,且直线与直线垂直,利用对称性可求出的值,利用代数法求出函数的零点的值,即可求出的值.【题目详解】令,得出,令,得出,则函数与函数、交点的横坐标分别为、.函数与的图象关于直线对称,且直线与直线垂直,如下图所示:联立,得,则点,由图象可知,直线与函数、的交点关于点对称,则,由题意得,解得,因此,.故选:C.【题目点拨】本题考查函数的零点之和的求解,充分利用同底数的对数函数与指数函数互为反函数这一性质,结合图象的对称性求解,考查数形结合思想的应用,属于中等题.3、D【解题分析】本题首先可以根据函数是定义域为R的偶函数判断出函数的对称轴,然后通过在上单调递减判断出函数在上的单调性,最后根据即可列出不等式并解出答案【题目详解】因为函数是定义域为R的偶函数,所以函数关于轴对称,即函数关于对称,因为函数在上单调递减,所以函数在上单调递增,因为,所以到对称轴的距离小于到对称轴的距离,即,,化简可得,,解得,故选D【题目点拨】本题考查了函数的单调性和奇偶性的相关性质,若函数是偶函数,则函数关于轴对称且轴左右两侧单调性相反,考查推理能力与计算能力,考查函数方程思想与化归思想,是中档题4、B【解题分析】根据向量加减法计算,再进行判断选择.【题目详解】;;;故选:B【题目点拨】本题考查向量加减法,考查基本分析求解能力,属基础题.5、B【解题分析】利用充分条件和必要条件的定义进行判断【题目详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B6、A【解题分析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式7、D【解题分析】结合基本不等式来求得的最小值.【题目详解】,,,,当且仅当时等号成立,由.故选:D8、A【解题分析】根据指数式与对数的互化和对数的换底公式,求得,,进而结合对数的运算公式,即可求解.【题目详解】由,可得,,由换底公式得,,所以,又因为,可得故选:A.9、A【解题分析】所以直线过圆的圆心,圆的圆心为,,解得.故选A.【题目点拨】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.10、C【解题分析】通过平移的方法作出直线和所成的角,并求得角的大小.【题目详解】依题意点,,分别是正方体的棱,的中点,连接,结合正方体的性质可知,所以是异面直线和所成的角,根据正方体的性质可知,是等边三角形,所以,所以直线和所成的角为.故选:C【题目点拨】本小题主要考查线线角的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先令,按照单调性求出函数的值域,写出的取值范围即可.【题目详解】令,显然该函数增函数,,值域为,故.故答案为:.12、【解题分析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【题目详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则或,解得.故答案为:【题目点拨】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.13、【解题分析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【题目详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【题目点拨】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题14、【解题分析】由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案【题目详解】解:由题意作出函数的图象,关于x的方程有两个不同的实根等价于函数与有两个不同的公共点,由图象可知当时,满足题意,故答案为【题目点拨】本题考查方程根的个数,数形结合是解决问题的关键,属基础题15、【解题分析】利用函数的解析式可计算得出的值.【题目详解】由已知条件可得.故答案为:.16、【解题分析】由指数式与对数式的互化公式求解即可【题目详解】因为,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上残留的污渍的;定义域为,值域为,在区间内单调递减.(2)当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时用单位的水清洗一次后残留的污渍较少.【解题分析】(1)①根据函数的实际意义说明即可;②由实际意义可得出函数的定义域,值域,单调性.(2)求出两种清洗方法污渍的残留量,并进行比较即可.【小问1详解】①表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上污渍的.②函数的定义域为,值域为,在区间内单调递减.【小问2详解】设清洗前衣服上的污渍为1,用单位的水,清洗一次后残留的污渍为,则;用单位的水清洗1次,则残留的污渍为,然后再用单位的水清洗1次,则残留的污渍为,因为,所以当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时用单位的水清洗一次后残留的污渍较少.18、(1);;(2).【解题分析】(1)根据的零点求出,的值,得出函数的解析式,然后解二次不等式即可;(2)利用换元法,令,则,然后结合二次函数的图象及性质求出最值.【题目详解】(1)由题意得,解得所以当时,即,.(2)令,则,,当时,有最小值,当时,有最大值,故.【题目点拨】本题考查二次函数的解析式求解、值域问题以及一元二次不等式的解法,较简单.解答时只要抓住二次方程、二次函数、二次不等式之间的关系,则问题便可迎刃而解.19、(1),(2)【解题分析】(1)根据是奇函数,是偶函数,结合,以取代入上式得到,联立求解;(2)易得,,设,转化为,,根据时,与有两个交点,转化为函数,在有一个零点求解.【小问1详解】解:因为是奇函数,是偶函数,所以,,∵,①∴令取代入上式得,即,②联立①②可得,,【小问2详解】,,,可得,∴,.设,∴,,∵当时,与有两个交点,要使函数有两个零点,即使得函数,在有一个零点,(时,只有一个零点)即方程在内只有一个实根,∵,令,则使即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年钦州运输从业资格证考试试题库
- 辽宁省辽阳县2025年初三下学期第一次考试语文试题含解析
- 邢台医学高等专科学校《遥感科学与技术专业外语》2023-2024学年第二学期期末试卷
- 辽宁对外经贸学院《幼儿行为观察与指导》2023-2024学年第二学期期末试卷
- 威海职业学院《环境和生物地球化学》2023-2024学年第二学期期末试卷
- 江苏省连云港市赣榆县重点中学2024-2025学年初三下学期第三次统练数学试题含解析
- 宿迁职业技术学院《翻译简史》2023-2024学年第一学期期末试卷
- 平顶山学院《地铁与隧道工程》2023-2024学年第二学期期末试卷
- 柳州铁道职业技术学院《园林与景观设计》2023-2024学年第二学期期末试卷
- 江苏省南京市江宁区2024-2025学年高三第一次十校联考生物试题含解析
- 网络设备安全配置表
- GB/T 700-2006碳素结构钢
- GB/T 28732-2012固体生物质燃料全硫测定方法
- GB/T 17214.1-1998工业过程测量和控制装置工作条件第1部分:气候条件
- 猪生殖器官(课堂PPT)
- 2023年广东学位英语试题学位英语考试真题(含答案)
- 《旅行社经营管理》考试复习题库及答案
- 粤教版五年级下册科学知识点
- 危大工程巡视检查记录表(深基坑)
- 《最好的未来》合唱曲谱
- GB∕T 36765-2018 汽车空调用1,1,1,2-四氟乙烷(气雾罐型)
评论
0/150
提交评论