版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市前洲中学数学高一上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.幂函数的图象不过原点,则()A. B.C.或 D.2.若函数()在有最大值无最小值,则的取值范围是()A. B.C. D.3.已知集合,,则()A. B.C. D.4.已知函数,将的图象上所有点沿x轴平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,且函数的图象关于y轴对称,则的最小值是()A. B.C. D.5.已知a>0,那么2+3a+4A.23 B.C.2+23 D.6.已知非空集合,则满足条件的集合的个数是()A.1 B.2C.3 D.47.函数的值域为()A. B.C. D.8.在梯形中,,,是边上的点,且.若记,,则()A. B.C. D.9.在平面直角坐标系中,角与角项点都在坐标原点,始边都与x轴的非负半轴重合,它们的终边关于y轴对称,若,则()A. B.C. D.10.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的半径为4,圆心角为,则扇形的面积为___________.12.亲爱的考生,我们数学考试完整的时间是2小时,则从考试开始到结束,钟表的分针转过的弧度数为___________.13.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________14.“”是“”的______条件.15.函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于原点对称,则的值为__________16.已知为的外心,,,,且;当时,______;当时,_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为(1)若,求实数的值;(2)若,求的值18.已知函数的图象关于原点对称,且当时,(1)试求在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.19.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.20.已知函数,.(1)求的最小正周期;(2)当时,求:(ⅰ)的单调递减区间;(ⅱ)的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.21.已知集合,.(1)求;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据幂函数的性质求参数.【题目详解】是幂函数,解得或或幂函数的图象不过原点,即故选:B2、B【解题分析】求出,根据题意结合正弦函数图象可得答案.【题目详解】∵,∴,根据题意结合正弦函数图象可得,解得.故选:B.3、D【解题分析】先求出集合B,再求出两集合的交集即可【题目详解】由,得,所以,因为,所以,故选:D4、B【解题分析】先将解析式化简后,由三角函数图象变换得到的解析式后求解.【题目详解】若向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,由题意得,的最小值为;若向右平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,同理得的最小值为,故选:B5、D【解题分析】利用基本不等式求解.【题目详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D6、C【解题分析】由题意可知,集合为集合的子集,求出集合,利用集合的子集个数公式可求得结果.【题目详解】,所以满足条件的集合可以为,共3个,故选:C.【题目点拨】本题考查集合子集个数的计算,考查计算能力,属于基础题.7、D【解题分析】根据分段函数的解析式,结合基本初等函数的单调,分别求得两段上函数的值域,进而求得函数的值域.【题目详解】当时,单调递减,此时函数的值域为;当时,在上单调递增,在上单调递减,此时函数的最大值为,最小值为,此时值域为,综上可得,函数值域为.故选:D.8、A【解题分析】作出图形,由向量加法的三角形法则得出可得出答案.【题目详解】如下图所示:由题意可得,由向量加法的三角形法则可得.故选:A.【题目点拨】本题考查利用基底来表示向量,涉及平面向量加法的三角形法则的应用,考查数形结合思想的应用,属于基础题.9、A【解题分析】利用终边相同的角和诱导公式求解.【题目详解】因为角与角的终边关于y轴对称,所以,所以,故选:A10、D【解题分析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积【题目详解】根据扇形的弧长公式可得,根据扇形的面积公式可得故答案为:12、【解题分析】根据角的概念的推广即可直接求出答案.【题目详解】因为钟表的分针转了两圈,且是按顺时针方向旋转,所以钟表的分针转过的弧度数为.故答案为:.13、【解题分析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【题目详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【题目点拨】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.14、充分不必要【解题分析】解方程,即可判断出“”是“”的充分不必要条件关系.【题目详解】解方程,得或,因此,“”是“”的充分不必要条件.故答案为充分不必要.【题目点拨】本题考查充分不必要条件的判断,一般转化为集合的包含关系来判断,考查推理能力,属于基础题.15、【解题分析】由题意知,先明确值,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得值【题目详解】∵函数的最小正周期为,∴,即,将的图象向左平移个单位长度,所得函数为,又所得图象关于原点对称,∴,即,又,∴故答案为:【题目点拨】本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法16、(1).(2).【解题分析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【题目详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【题目点拨】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.【题目详解】(1)由题意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴18、(1)(2)函数图象见解析,单调递增区间为和,单调递减区间为;【解题分析】(1)依题意是上的奇函数,即可得到,再设,根据时的解析式及奇函数的性质计算可得;(2)由(1)中的解析式画出函数图形,结合图象得到函数的单调区间;【小问1详解】解:的图象关于原点对称,是奇函数,又的定义域为,,解得设,则,当时,,,所以;【小问2详解】解:由(1)可得的图象如下所示:由图象可知的单调递增区间为和,单调递减区间为;19、(1);(2).【解题分析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则,,故,故函数解析式为.(2)当时,,则,,所以函数的值域为.点睛:求函数f(x)=Asin(ωx+φ)在区间[a,b]上值域的一般步骤:第一步:三角函数式的化简,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式第二步:由x的取值范围确定ωx+φ的取值范围,再确定sin(ωx+φ)(或cos(ωx+φ))的取值范围第三步:求出所求函数的值域(或最值)20、(1)(2)(ⅰ)(ⅱ)的最大值为,此时;的最小值为,此时【解题分析】(1)先用三角恒等变换化简得到,利用最小正周期公式求出答案;(2)在第一问的基础上,整体法求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 01-赵欣《资产配置解析及实战应用基金、保险、存款的实战营销》6课时
- (2025年)酒店有线电视系统维保服务合同9篇
- 2025年下半年吉水城投控股发展集团及下属子公司面向社会公开招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年吉林省高速公路集团限公司公开招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年吉林省通化柳河县政府专职消防员招聘15人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年吉林省省直事业单位公开招聘(10号)易考易错模拟试题(共500题)试卷后附参考答案
- 2025年苏州市公有住房承租权转让合同样本
- 2025年下半年吉安市永新县事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年司法部信息中心招聘5人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年下半年台州市空间地理信息中心招聘易考易错模拟试题(共500题)试卷后附参考答案
- 中级铁路车辆电工职业技能鉴定考试题及答案
- 校本课程《葫芦丝》教案
- 职业学院旅游管理专业核心课《景区服务与管理》课程标准
- 运维培训计划及方案
- 北师大版八年级上学期数学期中模拟测试卷(含答案)
- 高耗能落后机电设备淘汰目录
- 维修空调合同模板7篇
- 在线网课知慧《国际商务(双语)(吉林财大)》单元测试考核答案
- 新产品开发计划书
- 创新管理及其实施策略
- 中药贴敷在骨折康复中的临床应用
评论
0/150
提交评论