版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆哈密石油中学高一上数学期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若不等式对任意的均成立,则的取值不可能是()A. B.C. D.2.若,则的值为A.0 B.1C.-1 D.23.已知:,:,若是的必要不充分条件,则实数的取值范围是()A. B.C. D.4.用b,表示a,b,c三个数中的最小值设函数,则函数的最大值为A.4 B.5C.6 D.75.若函数的零点所在的区间为,则实数a的取值范围是()A. B.C. D.6.设函数与的图象的交点为,,则所在的区间是A. B.C. D.7.若函数的定义域为R,则下列函数必为奇函数的是()A. B.C. D.8.已知函数表示为设,的值域为,则()A., B.,C., D.,9.已知角的终边过点,且,则的值为()A. B.C. D.10.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(1)当时,求的值域;(2)若,且,求的值;12.某品牌笔记本电脑的成本不断降低,若每隔4年价格就降低,则现在价格为8100元的笔记本电脑,12年后的价格将降为__________元13.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________14.若函数(其中)在区间上不单调,则的取值范围为__________.15.如图,全集,A是小于10的所有偶数组成的集合,,则图中阴影部分表示的集合为__________.16.若不等式在上恒成立,则实数a的取值范围为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.18.如图,以Ox为始边作角与,它们的终边分别与单位圆相交于P,Q两点,已知点P的坐标为(1)求的值;(2)若,求的值19.如图,在四棱锥中,底面为平行四边形,,.(1)求证:;(2)若为等边三角形,,平面平面,求四棱锥的体积.20.在直角坐标平面内,角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,分别求sinα、cosα、tanα的值21.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据奇偶性定义和单调性的性质可得到的奇偶性和单调性,由此将恒成立的不等式化为,通过求解的最大值,可知,由此得到结果.【题目详解】,是定义在上的奇函数,又,为增函数,为减函数,为增函数.由得:,,整理得:,,,,的取值不可能是.故选:D.【题目点拨】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.2、A【解题分析】由题意得a不等于零,或,所以或,即的值为0,选A.3、C【解题分析】求解不等式化简集合,,再由题意可得,由此可得的取值范围【题目详解】解:由,即,解得或,所以或,,命题是命题的必要不充分条件,,则实数的取值范围是故选:C4、B【解题分析】在同一坐标系内画出三个函数,,的图象,以此确定出函数图象,观察最大值的位置,通过求函数值,解出最大值【题目详解】如图所示:则的最大值为与交点的纵坐标,由,得即当时,故选B【题目点拨】本题考查了函数的概念、图象、最值问题利用了数形结合的方法关键是通过题意得出的简图5、C【解题分析】由函数的性质可得在上是增函数,再由函数零点存在定理列不等式组,即可求解得a的取值范围.【题目详解】易知函数在上单调递增,且函数零点所在的区间为,所以,解得故选:C6、A【解题分析】设,则,有零点的判断定理可得函数的零点在区间内,即所在的区间是.选A7、C【解题分析】根据奇偶性的定义判断可得答案.【题目详解】,由得是偶函数,故A错误;,由得是偶函数,故B错误;,由得是奇函数,故C正确;,由得是偶函数,故D错误;故选:C.8、A【解题分析】根据所给函数可得答案.【题目详解】根据题意得,的值域为.故选:A.9、B【解题分析】因为角的终边过点,所以,,解得,故选B.10、C【解题分析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)【解题分析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则12、2400【解题分析】由题意直接利用指数幂的运算得到结果【题目详解】12年后的价格可降为81002400元故答案为2400【题目点拨】本题考查了指数函数模型的应用,考查了推理能力与计算能力,属于基础题13、①.##②.【解题分析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【题目详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;14、【解题分析】化简f(x),结合正弦函数单调性即可求ω取值范围.【题目详解】,x∈,①ω>0时,ωx∈,f(x)在不单调,则,则;②ω<0时,ωx∈,f(x)在不单调,则,则;综上,ω的取值范围是.故答案为:.15、【解题分析】根据维恩图可知,求,根据补集、交集运算即可.【题目详解】,A是小于10的所有偶数组成的集合,,,由维恩图可知,阴影部分为,故答案为:16、【解题分析】把不等式变形为,分和情况讨论,数形结合求出答案.【题目详解】解:变形为:,即在上恒成立令,若,此时在上单调递减,,而当时,,显然不合题意;当时,画出两个函数的图象,要想满足在上恒成立,只需,即,解得:综上:实数a的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)函数的定义域为,即在上恒成立.当时,恒成立,符合题意;当时,必有.综上,的取值范围是.(2)∵,∴.对任意,总有,等价于在上恒成立在上恒成立.设,则(当且仅当时取等号).,在上恒成立.当时,显然成立当时,在上恒成立.令,.只需.∵在区间上单调递增,∴.令.只需.而,且∴.故.综上,的取值范围是.18、(1)(2)【解题分析】(1)由三角函数的定义首先求得的值,然后结合二倍角公式和同角三角函数基本关系化简求解三角函数式的值即可;(2)由题意首先求得的关系,然后结合诱导公式和两角和差正余弦公式即可求得三角函数式的值.【题目详解】(1)由三角函数定义得,,∴原式(2)∵,且,∴,,∴,∴【题目点拨】本题主要考查三角函数的定义,二倍角公式及其应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.19、(1)详见解析;(2)2【解题分析】(1)根据题意作于,连结,可证得,于是,故,然后根据线面垂直的判定得到平面,于是可得所证结论成立.(2)由(1)及平面平面可得平面,故为四棱锥的高.又由题意可证得四边形为有一个角为的边长为的菱形,求得四边形的面积后可得所求体积【题目详解】(1)作于,连结.∵,,是公共边,∴,∴∵,∴,又平面,平面,,∴平面,又平面,∴(另法:证明,取的中点.)(2)∵平面平面,平面平面,,∴平面又为等边三角形,,∴.又由题意得,,是公共边,∴,∴,∴平行四边形为有一个角为的边长为的菱形,∴,∴四棱锥的体积【题目点拨】(1)证明空间中的垂直关系时,要注意三种垂直关系间的转化,合理运用三种垂直关系进行求解,以达到求解的目的,同时在证题中要注意平面几何知识的运用(2)立体几何中的计算问题中往往涉及到证明,同时在证明中渗透着计算,计算时要注意中间量的求解,最后再结合面积、体积公式得到所求20、【解题分析】由题意利用任意角的三角函数的定义,求得sinα、cosα、tanα的值【题目详解】解:角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,∴x=1,y=-2,r=|OA|=3,∴sinα==-、cosα==、tanα==-2【题目点拨】本题主要考查任意角的三角函数的定义,属于基础题21、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预决算实训周总结
- 酒店员工形象设计培训
- 2025版中医学常见症状及护理技巧
- 2025版脑瘫常见症状及康复护理技术
- 食品营养课畜禽类
- 账号分析评估讲解
- 青光眼手术术后康复规范
- 记忆的习惯和方法
- 如何教基层员工手机拍照技巧培训
- 鼠标手常见症状及护理方案
- 餐饮行业人力资源管理-招聘、培训和留住员工
- 建筑企业税收调研报告及政策解析
- 2025比亚迪供应商审核自查表
- 人教PEP版四年级英语上册 Unit 2 My friends 单元测试卷(含答案含听力原文)
- 仓库岗位晋升方案模板(3篇)
- 国家管网施工安全培训课件
- 国开2025年秋季《形势与政策》大作业答案
- 2025年生态环境综合行政执法考试参考题库(附答案)
- 2025年福建省公开遴选公务员笔试试题及答案解析(综合类)
- 2025-2030中国匹克球市场前景预判与未来发展形势分析报告
- HGT22818-2022橡胶工厂综合监控系统设计规范
评论
0/150
提交评论