




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区2024届高一上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.2.已知集合,,则()A. B.C. D.3.如图:在正方体中,设直线与平面所成角为,二面角的大小为,则为A. B.C. D.4.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽,而将信噪比从1000提升至4000,则大约增加了()附:A.10% B.20%C.50% D.100%5.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.16+C.48D.7.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.248.当时,函数(,),取得最小值,则关于函数,下列说法错误的是()A.是奇函数且图象关于点对称B.偶函数且图象关于点(π,0)对称C.是奇函数且图象关于直线对称D.是偶函数且图象关于直线对称9.已知两点,点在直线上,则的最小值为()A. B.9C. D.1010.已知直线:和直线:互相垂直,则实数的值为()A.-1 B.1C.0 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数给出下列四个结论:①存在实数,使函数为奇函数;②对任意实数,函数既无最大值也无最小值;③对任意实数和,函数总存在零点;④对于任意给定的正实数,总存在实数,使函数在区间上单调递减.其中所有正确结论的序号是______________.12.若是幂函数且在单调递增,则实数_______.13.已知函数,则=____________14.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________15.如图1,正方形ABCD的边长为2,点M为线段CD的中点.现把正方形纸按照图2进行折叠,使点A与点M重合,折痕与AD交于点E,与BC交于点F.记,则_______.16.茎叶图表示的是甲,乙两人在5次综合测评中的成绩,记甲,乙的平均成绩分别为a,b,则a,b的大小关系是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,集合,集合(1)若集合中只有一个元素,求的值;(2)若,求18.已知集合,,.(1)求;(2)若,求实数的取值范围.19.(1)已知,求的最小值;(2)求函数的定义域20.已知角α的终边经过点P.(1)求sinα的值;(2)求的值.21.已知函数是上的奇函数.(1)求的值;(2)比较与0的大小,并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【题目详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【题目点拨】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且2、B【解题分析】解对数不等式求得集合,由此判断出正确选项.【题目详解】,所以,所以没有包含关系,所以ACD选项错误,B选项正确.故选:B3、B【解题分析】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°故答案选:B4、B【解题分析】根据题意,计算出值即可;【题目详解】当时,,当时,,因为所以将信噪比从1000提升至4000,则大约增加了20%,故选:B.【题目点拨】本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.5、A【解题分析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【题目详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.6、B【解题分析】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.7、A【解题分析】先阅读题意,再结合指数运算即可得解.【题目详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【题目点拨】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.8、C【解题分析】根据正弦型函数的性质逐一判断即可.【题目详解】因为当时,函数取得最小值,所以,因为,所以令,即,所以,设,因为,所以函数是奇函数,因此选项B、D不正确;因为,,所以,因此函数关于直线对称,因此选项A不正确,故选:C9、C【解题分析】根据给定条件求出B关于直线的对称点坐标,再利用两点间距离公式计算作答.【题目详解】依题意,若关于直线的对称点,∴,解得,∴,连接交直线于点,连接,如图,在直线上任取点C,连接,显然,直线垂直平分线段,则有,当且仅当点与重合时取等号,∴,故的最小值为.故选:C10、B【解题分析】利用两直线垂直的充要条件即得.【题目详解】∵直线:和直线:互相垂直,∴,即.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、①②③④【解题分析】分别作出,和的函数的图象,由图象即可判断①②③④的正确性,即可得正确答案.【题目详解】如上图分别为,和时函数的图象,对于①:当时,,图象如图关于原点对称,所以存在使得函数为奇函数,故①正确;对于②:由三个图知当时,,当时,,所以函数既无最大值也无最小值;故②正确;对于③:如图和图中存在实数使得函数图象与没有交点,此时函数没有零点,所以对任意实数和,函数总存在零点不成立;故③不正确对于④:如图,对于任意给定的正实数,取即可使函数在区间上单调递减,故④正确;故答案为:①②④【题目点拨】关键点点睛:本题解题关键点是分段函数图象,涉及二次函数的图象,要讨论,和即明确分段区间,作出函数图象,数形结合可研究分段函数的性质.12、2【解题分析】由幂函数可得,解得或2,检验函数单调性求解即可.【题目详解】为幂函数,所以,解得或2.当时,,在不单调递增,舍去;当时,,在单调递增成立.故答案为.【题目点拨】本题主要考查了幂函数的定义及单调性,属于基础题.13、【解题分析】由函数解析式,先求得,再求得代入即得解.【题目详解】函数,则==,故答案为.【题目点拨】本题考查函数值的求法,属于基础题.14、【解题分析】根据所给弦长,圆心角求出所在圆的半径,利用扇形面积公式求解.【题目详解】由弦长为2,圆心角为2可知扇形所在圆的半径,故,故答案为:15、【解题分析】设,则,利用勾股定理求得,进而得出,根据正弦函数的定义求出,由诱导公式求出,结合同角的三角函数关系和两角和的正弦公式计算即可.【题目详解】设,则,在中,,所以,即,解得,所以,所以在中,,则,又,所以.故答案为:16、【解题分析】分别计算出甲,乙的平均分,从而可比较a,b的大小关系.【题目详解】易知甲的平均分为,乙的平均分为,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)对应一元二次方程两根相等,.(2)先由已知确定、的值,再确定集合、的元素即可.【小问1详解】因为集合中只有一个元素,所以,【小问2详解】当时,,,,此时,,18、(1);(2)【解题分析】(1)可利用数轴求两个集合的交集;(2)根据子集关系列出不等式组,解不等式组即可【题目详解】(1)(2)因为,所以当时,有,解得,所以实数的取值范围是【题目点拨】解决集合问题应注意的问题:①认清元素的属性:解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件;②注意元素的互异性:在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误;③防范空集:在解决有关,等集合问题时,往往忽略空集的情况,一定要先考虑是否成立,以防漏解19、(1)3;(2)或【解题分析】(1)由,利用基本不等式即可求解.(2)由题意可得,解一元二次不等式即可求解.【题目详解】解:(1),,,当且仅当,即时取等号,的最小值为3;(2)由题知,令,解得或∴函数定义域为或20、(1);(2)【解题分析】(1)由正弦函数定义计算;(2)由诱导公式,商数关系变形化简,由余弦函数定义计算代入可得.【题目详解】(1)因为点P,所以|OP|=1,sinα=.(2)由三角函数定义知cosα=,故所求式子的值为21、(1);(2)【解题分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年铁道工程与管理专业资格考试试题及答案
- 2025年物流管理资格考试试题及解析
- 老龄化相关面试题及答案
- 托业模拟测试题及答案
- 2025年高中生化学期末考试试题及答案
- 35年java面试题及答案
- 雪球java面试题及答案
- 经济学微观经济学知识要点与试题
- 网络工程师职业素养在工作中的体现试题及答案
- 网络风险评估的步骤与工具试题及答案
- 2025中考语文常考作文押题主题附范文
- 河道漂流设计施工方案
- 2025年新媒体职位面试题及答案
- 《跨境电商》课件-跨境电商行业发展
- 2025年陕西煤业化工建设集团有限公司招聘笔试参考题库含答案解析
- 公立医院成本核算指导手册
- 餐饮连锁管理制度
- 产品制程不良率统计表
- 2024年01月广东2024年珠海华润银行社会招考(125)笔试历年参考题库附带答案详解
- 人教版小学数学三年级下册《奥数竞赛试卷》
- 《非遗苗族蜡染》少儿美术教育绘画课件创意教程教案
评论
0/150
提交评论