




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省益阳市桃江第一中学2024届高一数学第一学期期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.42.圆:与圆:的位置关系是A.相交 B.相离C.外切 D.内切3.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流4.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是()A.①② B.②③C.③④ D.①④5.将函数的周期扩大到原来的2倍,再将函数图象左移,得到图象对应解析式是()A. B.C. D.6.已知函数,且在内有且仅有两个不同的零点,则实数的取值范围是A. B.C. D.7.函数与g(x)=-x+a的图象大致是A. B.C. D.8.半径为2的扇形OAB中,已知弦AB的长为2,则的长为A. B.C. D.9.关于的不等式的解集为,且,则()A.3 B.C.2 D.10.已知全集,集合,,那么阴影部分表示的集合为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.12.已知为奇函数,,则____________13.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是_______14.已知,用m,n表示为___________.15.一个底面积为1的正四棱柱的八个顶点都在同一球面上,若这个正四棱柱的高为,则该球的表面积为__________16.已知一个圆锥的母线长为1,其高与母线的夹角为45°,则该圆锥的体积为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点(1)求边上高所在直线的方程;(2)求的面积18.设,关于的二次不等式的解集为,集合,满足,求实数的取值范围.19.已知函数,(为常数).(1)当时,判断在的单调性,并用定义证明;(2)若对任意,不等式恒成立,求的取值范围;(3)讨论零点的个数.20.如图,在平面四边形ABCD中,AB=2,CD=23,∠DAB=∠CDB=θ,0<θ<π2,∠ADB=π(1)求四边形ABCD面积的最大值;(2)求DA+DB+DE的取值范围21.已知函数.(1)求的最小正周期;(2)若,求的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【题目详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B2、A【解题分析】求出两圆的圆心和半径,用圆心距与半径和、差作比较,得出结论.【题目详解】圆的圆心为(1,0),半径为1,圆的圆心为(0,2),半径为2,故两圆圆心距为,两半径之和为3,两半径之差为1,其中,故两圆相交,故选:A.【题目点拨】本题主要考查两圆的位置关系,需要学生熟悉两圆位置的五种情形及其判定方法,属于基础题.3、D【解题分析】地球上的小河流不确定,因此不能够构成集合,选D.4、B【解题分析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【题目详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【题目点拨】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.5、D【解题分析】直接利用函数图象的与平移变换求出函数图象对应解析式【题目详解】解:将函数y=5sin(﹣3x)的周期扩大为原来的2倍,得到函数y=5sin(x),再将函数图象左移,得到函数y=5sin[(x)]=5sin()=5sin()故选D【题目点拨】本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题.6、C【解题分析】由,即,分别作出函数和的图象如图,由图象可知表示过定点的直线,当过时,此时两个函数有两个交点,当过时,此时两个函数有一个交点,所以当时,两个函数有两个交点,所以在内有且仅有两个不同的零点,实数的取值范围是,故选C.7、A【解题分析】因为直线是递减,所以可以排除选项,又因为函数单调递增时,,所以当时,,排除选项B,此时两函数的图象大致为选项,故选A.【方法点晴】本题通过对多个图象的选择考查函数的指数函数、一次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8、C【解题分析】由已知可求圆心角的大小,根据弧长公式即可计算得解【题目详解】设扇形的弧长为l,圆心角大小为,∵半径为2的扇形OAB中,弦AB的长为2,∴,∴故选C【题目点拨】本题主要考查了弧长公式的应用,考查了数形结合思想的应用,属于基础题9、A【解题分析】根据一元二次不等式与解集之间的关系可得、,结合计算即可.【题目详解】由不等式的解集为,得,不等式对应的一元二次方程为,方程的解为,由韦达定理,得,,因为,所以,即,整理,得.故选:A10、D【解题分析】由韦恩图可知阴影部分表示的集合为,求出,计算得到答案【题目详解】阴影部分表示的集合为,故选【题目点拨】本题主要考查的是韦恩图表达集合的关系和运算,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、或(答案不唯一)【解题分析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【题目详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【题目点拨】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.12、【解题分析】根据奇偶性求函数值.【题目详解】因为奇函数,,所以.故答案为:.13、【解题分析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.考点:圆锥的侧面展开图与体积.14、【解题分析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.15、【解题分析】底面为正方形,对角线长为.故圆半径为,故球的表面积为.【题目点拨】本题主要考查几何体的外接球问题.解决与几何体外接球有关的数学问题时,主要是要找到球心所在的位置,并计算出球的半径.寻找球心的一般方法是先找到一个面的外心,如本题中底面正方形的中心,球心就在这个外心的正上方,根据图形的对称性,易得球心就在正四棱柱中间的位置.16、##【解题分析】由题可得,然后利用圆锥的体积公式即得.【题目详解】设圆锥的底面半径为r,高为h,由圆锥的母线长为1,其高与母线的夹角为45°,∴,∴该圆锥的体积为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);⑵8.【解题分析】(1)设BC边的高所在直线为l,由斜率公式求出KBC,根据垂直关系得到直线l的斜率Kl,用点斜式求出直线l的方程,并化为一般式(2)由点到直线距离公式求出点A(﹣1,4)到BC的距离d,由两点间的距离公式求出|BC|,代入△ABC的面积公式求出面积S的值试题解析:(1)设边上高所在直线为,由于直线的斜率所以直线的斜率.又直线经过点,所以直线的方程为,即⑵边所在直线方程为:,即点到直线的距离,又.18、【解题分析】由题意,求出方程的两根,讨论的正负,确定二次不等式的解集A的形式,然后结合数轴列出不等式求解即可得答案.【题目详解】解:由题意,令,解得两根为,由此可知,当时,解集,因为,所以的充要条件是,即,解得;当时,解集,因为,所以的充要条件是,即,解得;综上,实数的取值范围为.19、(1)见解析;(2);(3)见解析.【解题分析】(1)利用函数的单调性的定义,即可证得函数的单调性,得到结论;(2)由得,转化为,设,利用二次函数的性质,即可求解.(3)把函数有个零点转化为方程有两个解,令,作的图像及直线图像,结合图象,即可求解,得到答案.【题目详解】(1)当时,且时,是单调递减的.证明:设,则又且,故当时,在上是单调递减的.(2)由得,变形为,即,设,令,则,由二次函数的性质,可得,所以,解得.(3)由有个零点可得有两个解,转化为方程有两个解,令,作的图像及直线图像有两个交点,由图像可得:i)当或,即或时,有个零点.ii)当或或时,由个零点;iii)当或时,有个零点.【题目点拨】本题主要考查了函数的单调性的判定,以及函数与方程的综合应用,其中解答中熟记函数的单调性的定义,以及合理分离参数和转化为图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及分类讨论思想的应用,试题有一定的综合性,属于中档试题.20、(1)2+(2)2,1+2【解题分析】(1)依题意可得DA=2cosθ,DB=2sinθ,再由∠CDB=θ,得到BE=2sin2θ(2)依题意可得DA+DB+DE=2cosθ+2sinθ+2sin【小问1详解】解:因为∠ADB=90°,AB=2,∠DAB=θ,所以DA=2cosθ,又因为∠CDB=θ,所以BE=BDsinθ=2则S==2==2因为0<θ<π2,-π当2θ-π3=π2时,即θ=5π【小问2详解】解:DA+DB+DE=2设t=cosθ+sin所以2cosθsin因为t=2sinθ+π而DA+DB+DE=(t+1)2-2可得DA+DB+DE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国节能暖风机行业市场发展分析及竞争格局与投资发展研究报告
- 2025-2030中国绣花吊裙套袍市场发展分析及市场趋势与投资方向研究报告
- 幼儿园防食物中毒活动策划方案
- 污水厂施工组织方案
- 通村道路养护方案
- 建筑施工企业售后服务保障方案
- 城市工地防尘措施方案
- 破损路面修缮方案
- 儿童清明节课件素材
- 工业厂房拆装方案模板
- 化工操作工仪表知识培训
- QCT269-2023汽车铸造零件未注公差尺寸的极限偏差
- JT-T 1172.1-2017 系列2集装箱 技术要求和试验方法 第1部分:通.用货物集装箱
- 消防设施维保服务投标方案
- 钢结构3D3S-非线性分析讲座课件
- 办公用品应急预案
- 关于配电房培训课件
- 2023年SQE供应商质量工程师年度总结及下年规划
- 品牌形象设计之辅助图形的操作
- 可用性控制程序
- 福建省泉州市泉州实验中学2024届八上数学期末联考模拟试题含解析
评论
0/150
提交评论