




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上戏附中2024届高一上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.2.已知,,,则,,的大小关系是()A. B.C. D.3.已知函数,若函数有两个不同的零点,则实数的取值范围是()A. B.C. D.4.函数的部分图象大致是()A. B.C. D.5.已知扇形周长为40,当扇形的面积最大时,扇形的圆心角为()A. B.C.3 D.26.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.7.如果命题“使得”是假命题,那么实数的取值范围是()A. B.C. D.8.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④9.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和10.函数与的图象()A.关于轴对称 B.关于轴对称C.关于原点对称 D.关于直线轴对称二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像恒过定点___________12.如图,全集,A是小于10的所有偶数组成的集合,,则图中阴影部分表示的集合为__________.13.已知函数的图象恒过定点,若点也在函数的图象上,则_________14.函数的定义域为__________15.___________16.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围18.设全集为,集合,(1)分别求,;(2)已知,若,求实数的取值范围构成的集合19.已知二次函数的图象关于直线对称,且关于x的方程有两个相等的实数根(1)求函数的值域;(2)若函数(且)在上有最小值﹣2,最大值7,求a的值20.(1)用篱笆围一个面积为的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?21.已知圆,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求线段PM长度.(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段长度的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【题目详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【题目点拨】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2、B【解题分析】分别求出的范围,然后再比较的大小.【题目详解】,,,,,,并且,,综上可知故选:B【题目点拨】本题考查指对数和三角函数比较大小,意在考查转化与化归的思想和基础知识,属于基础题型.3、A【解题分析】将函数零点个数问题转化为图象交点个数问题,再数形结合得解.【题目详解】函数有两个不同的零点,即方程有两个不同的根,从而函数的图象和函数的图象有两个不同的交点,由可知,当时,函数是周期为1的函数,如图,在同一直角坐标系中作出函数的图象和函数的图象,数形结合可得,当即时,两函数图象有两个不同的交点,故函数有两个不同的零点.故选:A.4、A【解题分析】分析函数的奇偶性及其在上的函数值符号,结合排除法可得出合适的选项.【题目详解】函数的定义域为,,函数为偶函数,排除BD选项,当时,,则,排除C选项.故选:A.5、D【解题分析】设出扇形半径并表示出弧长后,由扇形面积公式求出取到面积最大时半径的长度,代入圆心角弧度公式即可得解.【题目详解】设扇形半径,易得,则由已知该扇形弧长为.记扇形面积为,则,当且仅当,即时取到最大值,此时记扇形圆心角为,则故选:D6、C【解题分析】根据三角函数的周期变换和平移变换的原理即可得解.【题目详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.7、B【解题分析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解.【题目详解】依题意,命题“使得”是假命题,则该命题的否定为“”,且是真命题;所以,.故选:B8、B【解题分析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【题目详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【题目点拨】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.9、B【解题分析】根据样本容量和其它各组的频数,即可求得答案.【题目详解】由题意可得:第3组频数为,故第3组的频率为,故选:B10、D【解题分析】函数与互为反函数,然后可得答案.【题目详解】函数与互为反函数,它们的图象关于直线轴对称故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【题目详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.12、【解题分析】根据维恩图可知,求,根据补集、交集运算即可.【题目详解】,A是小于10的所有偶数组成的集合,,,由维恩图可知,阴影部分为,故答案为:13、【解题分析】根据对数过定点可求得,代入构造方程可求得结果.【题目详解】,,,解得:.故答案为:.14、【解题分析】真数大于0求定义域.【题目详解】由题意得:,解得:,所以定义域为.故答案为:15、【解题分析】利用、两角和的正弦展开式进行化简可得答案.【题目详解】故答案为:.16、【解题分析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【题目详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用奇函数定义求出实数a的值;(2)先求解定义域,然后参变分离后求出的取值范围,进而求出实数m的取值范围.【小问1详解】由题意得:,即,解得:,当时,,不合题意,舍去,所以,经检验符合题意;【小问2详解】由,解得:,由得:或,综上:不等式中,变形为,即恒成立,令,当时,,所以,实数m的取值范围为.18、(1),或或;(2)【解题分析】(1)解一元二次不等式求得集合,由交集、并集和补集的概念计算可得结果;(2)根据集合的包含关系可构造不等式组求得结果.【题目详解】(1),则或,,或或;(2),,,解得:,则实数的取值范围构成的集合为.19、(1)(2)或【解题分析】(1)根据对称轴以及判别式等于得出,再由基本不等式得出函数的值域;(2)利用换元法结合对数函数以及二次函数的单调性得出a的值【小问1详解】依题意得,因为,所以,解得,,故,,当时,,当且仅当,即时,等号成立当时,,当且仅当,即时,等号成立故的值域为【小问2详解】,令,则①当时,,因,所以,解得因为,所以,解得或(舍去)②当时,,因为,所以,解得,解得或(舍去)综上,a的值为或20、(1)当这个矩形菜园是边长为的正方形时,最短篱笆的长度为;(2)当这个矩形菜园是边长为的正方形时,最大面积是.【解题分析】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由题意得出,利用基本不等式可求出矩形周长的最小值,由等号成立的条件可得出矩形的边长,从而可得出结论;(2)由题意得出,利用基本不等式可求出矩形面积的最大值,由等号成立的条件可得出矩形的边长,从而可得出结论.【题目详解】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由已知得,由,可得,所以,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,所用篱笆最短,最短篱笆的长度为;(2)由已知得,则,矩形菜园的面积为.由,可得,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,菜园的面积最大,最大面积是.【题目点拨】本题考查基本不等式的应用,在运用基本不等式求最值时,充分利用“积定和最小,和定积最大”的思想求解,同时也要注意等号成立的条件,考查计算能力,属于基础题.21、(1)8(2)(3)【解题分析】(1)根据圆中切线长的性质得到;(2)设,经过A,P,M三点的圆N以MP为直径,圆N的方程为化简求值即可;(3)(Ⅲ)求出点M到直线AB的距离,利用勾股定理,即可求线段AB长度的最小值.解析:(1)由题意知,圆M的半径r=4,圆心M(0,6),设PA是圆的一条切线,(2)设,经过A,P,M三点的圆N以MP为直径,圆心,半径为得圆N的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络运维自动化平台创新创业项目商业计划书
- 社交媒体汽车话题挑战赛创新创业项目商业计划书
- 电脑数据安全云备份服务创新创业项目商业计划书
- 编程公益支教服务创新创业项目商业计划书
- 环保活动国际传播翻译创新创业项目商业计划书
- 现场宣传安全知识培训课件
- 2025年汽车共享平台智能出行服务与城市交通发展报告
- 2025年直播电商行业主播影响力与社群营销策略研究报告
- 2025年数字化教材在国家安全教育中的应用与教学效果评价
- 现场会汇报课件
- “雄鹰杯”全国小动物医师技能大赛考试题库(660题)
- 实验室隐患排查培训
- 九年级化学第三单元课题1分子和原子人教新课标版省公开课获奖课件说课比赛一等奖课件
- 宠物医疗器械创新与发展
- 《路由与交换技术》教学大纲
- 4《给植物画张“像”》教学设计-2024-2025学年科学一年级上册教科版
- 森林防火条例
- 初中物理新课程标准测试题及答案(四套)
- (高清版)DZT 0331-2020 地热资源评价方法及估算规程
- 新能源发电技术 第2版 教学课件 8波浪能
- 研究生学位论文编写规则
评论
0/150
提交评论