2024届湖北省孝感市七校教学联盟高一上数学期末检测试题含解析_第1页
2024届湖北省孝感市七校教学联盟高一上数学期末检测试题含解析_第2页
2024届湖北省孝感市七校教学联盟高一上数学期末检测试题含解析_第3页
2024届湖北省孝感市七校教学联盟高一上数学期末检测试题含解析_第4页
2024届湖北省孝感市七校教学联盟高一上数学期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省孝感市七校教学联盟高一上数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于函数有下述四个结论:①是偶函数;②在区间单调递减;③在有个零点;④的最大值为.其中所有正确结论的编号是()A.①②④ B.②④C.①④ D.①③2.已知指数函数的图象过点,则()A. B.C.2 D.43.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.4.现在人们的环保意识越来越强,对绿色建筑材料的需求也越来越高.某甲醛检测机构对某种绿色建筑材料进行检测,一定量的该种材料在密闭的检测房间内释放的甲醛浓度(单位:)随室温(单位:℃)变化的函数关系式为(为常数).若室温为20℃时该房间的甲醛浓度为,则室温为30℃时该房间的甲醛浓度约为(取)()A. B.C. D.5.已知函数y=a+sinbx(b>0且b≠1)的图象如图所示,那么函数y=logb(x-a)的图象可能是()A. B.C. D.6.如图,某池塘里浮萍的面积(单位:)与时间t(单位:月)的关系为,关于下列说法不正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积超过D.若浮萍蔓延到所经过的时间分别是,、,则7.若圆上有且仅有两个点到直线的距离等于1,则半径的取值范围是()A. B.C. D.8.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则9.下列函数在定义域内单调递增的是()A. B.C. D.10.已知方程的两根为与,则()A.1 B.2C.4 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____12.写出一个同时具有下列三个性质的函数:___________.①为幂函数;②为偶函数;③在上单调递减.13.关于函数与有下面三个结论:①函数的图像可由函数的图像平移得到②函数与函数在上均单调递减③若直线与这两个函数的图像分别交于不同的A,B两点,则其中全部正确结论的序号为____14.若,则____15.已知,则______.16.记为偶函数,是正整数,,对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,则的值是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知非空集合,(1)当时,求;(2)若,求实数的取值范围18.如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证:(1)平面平面;(2)平面平面.19.设函数是定义在上的奇函数,当时,(1)确定实数的值并求函数在上的解析式;(2)求满足方程的的值.20.已知cosα=-,α第三象限角,求(1)tanα的值;(2)sin(180°+α)cos(-α)sin(-α+180°)+cos(360°+α)sin(-α)tan(-α-180°)的值21.在①“xA是xB的充分不必要条件;②;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合,.(1)当a=2时,求;(2)若选,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用偶函数的定义可判断出命题①的正误;去绝对值,利用余弦函数的单调性可判断出命题②的正误;求出函数在区间上的零点个数,并利用偶函数的性质可判断出命题③的正误;由取最大值知,然后去绝对值,即可判断出命题④的正误.【题目详解】对于命题①,函数的定义域为,且,则函数为偶函数,命题①为真命题;对于命题②,当时,,则,此时,函数在区间上单调递减,命题②正确;对于命题③,当时,,则,当时,,则,由偶函数的性质可知,当时,,则函数在上有无数个零点,命题③错误;对于命题④,若函数取最大值时,,则,,当时,函数取最大值,命题④正确.因此,正确的命题序号为①②④.故选A.【题目点拨】本题考查与余弦函数基本性质相关的命题真假的判断,解题时要结合自变量的取值范围去绝对值,结合余弦函数的基本性质进行判断,考查推理能力,属于中等题.2、C【解题分析】由指数函数过点代入求出,计算对数值即可.【题目详解】因为指数函数的图象过点,所以,即,所以,故选:C3、A【解题分析】由扇形面积公式计算【题目详解】由题意,故选:A4、D【解题分析】由题可知,,求出,在由题中的函数关系式即可求解.【题目详解】由题意可知,,解得,所以函数的解析式为,所以室温为30℃时该房间的甲醛浓度约为.故选:D.5、C【解题分析】由三角函数的图象可得a>1,且最小正周期T=<π,所以b>2,则y=logb(x-a)是增函数,排除A和B;当x=2时,y=logb(2-a)<0,排除D,故选C.6、B【解题分析】先利用特殊点求出函数解析式为,再利用指数函数的性质即可判断出正误【题目详解】解:图象可知,函数过点,,函数解析式为,浮萍每月的增长率为,故选项A正确,函数是指数函数,是曲线型函数,浮萍每月增加的面积不相等,故选项B错误,当时,,故选项C正确,对于D选项,,,,,又,,故选项D正确,故选:B7、C【解题分析】圆上有且仅有两个点到直线的距离等于1,先求圆心到直线的距离,再求半径的范围【题目详解】解:圆的圆心坐标,圆心到直线的距离为:,又圆上有且仅有两个点到直线的距离等于1,满足,即:,解得故半径的取值范围是,(如图)故选:【题目点拨】本题考查直线与圆的位置关系,考查数形结合的数学思想,属于中档题8、A【解题分析】本道题目分别结合平面与平面平行判定与性质,平面与平面平行垂直判定与性质,即可得出答案.【题目详解】A选项,结合一条直线与一平面垂直,则过该直线的平面垂直于这个平面,故正确;B选项,平面垂直,则位于两平面的直线不一定垂直,故B错误;C选项,可能平行于与相交线,故错误;D选项,m与n可能异面,故错误【题目点拨】本道题目考查了平面与平面平行判定与性质,平面与平面平行垂直判定与性质,发挥空间想象能力,找出选项的漏洞,即可.9、D【解题分析】根据题意,依次分析选项中函数的单调性,综合即可得答案详解】解:根据题意,依次分析选项:对于A,,是二次函数,在其定义域上不是单调函数,不符合题意;对于B,,是正切函数,在其定义域上不是单调函数,不符合题意;对于C,,是指数函数,在定义域内单调递减,不符合题意;对于D,,是对数函数,在定义域内单调递增,符合题意;故选:D10、D【解题分析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【题目详解】显然方程有两个实数解,由题意,,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、##,##【解题分析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【题目详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,12、(或,,答案不唯一)【解题分析】结合幂函数的图象与性质可得【题目详解】由幂函数,当函数图象在一二象限时就满足题意,因此,或,等等故答案为:(或,,答案不唯一)13、①②##②①【解题分析】根据三角函数的平移法则和单调性知①②正确,取代入计算得到③错误,得到答案.【题目详解】向左平移个单位得到,①正确;函数在上单调递减,函数在上单调递减,②正确;取,则,,,③错误.故答案为:①②14、##0.25【解题分析】运用同角三角函数商数关系式,把弦化切代入即可求解.【题目详解】,故答案为:.15、【解题分析】利用商数关系,由得到代入求解.【题目详解】方法一:,则.方法二:分子分母同除,得.故答案为:【题目点拨】本题主要考查同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题.16、4、5、6【解题分析】根据偶函数,是正整数,推断出的取值范围,相邻的两个的距离是,依照题意列不等式组,求出的值【题目详解】由题意得.∵为偶函数,是正整数,∴,∵对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,∴中任意相邻两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1∴,解得,又,∴.答案:【题目点拨】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解的意义,强调抽象思维与灵活应变的能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)时,先解一元二次不等式,化简集合A和B,再进行交集运算即可;(2)根据子集关系列不等式,解不等式即得结果.【题目详解】解:(1)当时,,由,解得,,;(2)由(1)知,,解得,实数的取值范围为.18、(1)证明见解析(2)证明见解析【解题分析】(1)证明出平面,平面,利用面面垂直的判定定理可证得结论成立;(2)证明出平面,可得出平面,利用面面垂直的判定定理可证得结论成立.【小问1详解】证明:翻折前,,翻折后,则有,,因为平面,平面,平面,因为平面,平面,平面,因为,因此,平面平面.【小问2详解】证明:翻折前,在梯形中,,,则,,则,翻折后,对应地,,,因为,所以,平面,,则平面,平面,因此,平面平面.19、(1),(2)或或【解题分析】(1)利用奇函数定义即可得到的值及函数在上的解析式;(2)分成两类,解指数型方程即可得到结果.【题目详解】(1)是定义在上的奇函数当时,,当时,设,则(2)当时,,令,得得解得是定义在上的奇函数所以当x<0时的根为:所以方程的根为:【题目点拨】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围20、(1);(2).【解题分析】(1)根据为第三象限角且求出的值,从而求出的值(1)将原式利用诱导公式化简以后将的值代入即可得解【题目详解】解:(1)∵cosα=-,α是第三象限角,∴sinα=-=-,tanα==2(2)sin(180°+α)cos(-α)sin(-α+180°)+cos(360°+α)sin(-α)tan(-α-180°)=-sinα•cosα•sinα+cosα•(-sinα)•(-tanα)=-cosαsin2α+sin2α=•+=【题目点拨】当已知正余弦的某个值且知道角的取值范围时可直接利用同角公式求出另外一个值.关于诱导公式化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论