贵州省遵义第四中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第1页
贵州省遵义第四中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第2页
贵州省遵义第四中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第3页
贵州省遵义第四中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第4页
贵州省遵义第四中学2024届高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省遵义第四中学2024届高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,的零点依次为,则以下排列正确的是()A. B.C. D.2.已知函数,若关于x的方程有五个不同实根,则m的值是()A.0或 B.C.0 D.不存在3.已知,则()A. B.C. D.4.已知角的终边经过点,则A. B.C. D.5.已知函数是定义域为R的奇函数,且,当时,,则等于()A.-2 B.2C. D.-6.定义运算:,则函数的图像是()A. B.C. D.7.已知函数是定义域上的递减函数,则实数a的取值范围是()A. B.C. D.8.与2022°终边相同的角是()A. B.C.222° D.142°9.已知命题,,则p的否定是()A., B.,C., D.,10.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则二、填空题:本大题共6小题,每小题5分,共30分。11.若集合有且仅有两个不同的子集,则实数=_______;12.已知若,则().13.圆柱的侧面展开图是边长分别为的矩形,则圆柱的体积为_____________14.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.15.已知,,,则,,的大小关系是______.(用“”连接)16.某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,根据垃圾分类要求,下述格点为垃圾回收点:,,,,,.请确定一个格点(除回收点外)___________为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥的底面是菱形,,平面,是的中点.(1)求证:平面平面;(2)棱上是否存在一点,使得平面?若存在,确定的位置并加以证明;若不存在,请说明理由.18.如图,直三棱柱的底面是边长为2的正三角形,分别是的中点(1)证明:平面平面;(2)若直线与平面所成的角为,求三棱锥的体积19.已知,.(1)求的值;(2)求的值.20.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)21.要建造一段5000m的高速公路,工程队需要把600人分成两组,一组完成一段2000m的软土地带公路的建造任务,同时另一组完成剩下的3000m的硬土地带公路的建造任务.据测算,软、硬土地每米公路的工程量分别是50人/天和30人/天,设在软土地带工作的人数x人,在软土、硬土地带筑路的时间分别记为,(1)求,;(2)求全队的筑路工期;(3)如何安排两组人数,才能使全队筑路工期最短?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】在同一直角坐标系中画出,,与的图像,数形结合即可得解【题目详解】函数,,的零点依次为,在同一直角坐标系中画出,,与的图像如图所示,由图可知,,,满足故选:B.【题目点拨】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解2、C【解题分析】令,做出的图像,根据图像确定至多存在两个的值,使得与有五个交点时,的值或取值范围,进而转为求方程在的值或取值范围有解,利用一元二次方程根的分布,即可求解.【题目详解】做出图像如下图所示:令,方程,为,当时,方程没有实数解,当或时,方程有2个实数解,当,方程有4个实数解,当时,方程有3个解,要使方程方程有五个实根,则方程有一根为1,另一根为0或大于1,当时,有或,当时,,或,满足题意,当时,,或,不合题意,所以.故选:C.【题目点拨】本题考查复合方程的解,换元法是解题的关键,数形结合是解题的依赖,或直接用选项中的值代入验证,属于较难题.3、D【解题分析】先求出,再分子分母同除以余弦的平方,得到关于正切的关系式,代入求值.【题目详解】由得,,所以故选:D4、D【解题分析】由任意角的三角函数定义列式求解即可.【题目详解】由角终边经过点,可得.故选D.【题目点拨】本题主要考查了任意角三角函数的定义,属于基础题.5、B【解题分析】根据奇函数性质和条件,求得函数的周期为8,再化简即可.【题目详解】函数是定义域为R的奇函数,则有:又,则则有:可得:故,即的周期为则有:故选:B6、A【解题分析】先求解析式,再判断即可详解】由题意故选:A【题目点拨】本题考查函数图像的识别,考查指数函数性质,是基础题7、B【解题分析】由指数函数的单调性知,即二次函数是开口向下的,利用二次函数的对称轴与1比较,再利用分段函数的单调性,可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围【题目详解】函数是定义域上的递减函数,当时,为减函数,故;当时,为减函数,由,得,开口向下,对称轴为,即,解得;当时,由分段函数单调性知,,解得;综上三个条件都满足,实数a的取值范围是故选:B.【题目点拨】易错点睛:本题考查分段函数单调性,函数单调性的性质,其中解答时易忽略函数在整个定义域上为减函数,则在分界点处()时,前一段的函数值不小于后一段的函数值,考查学生的分析能力与运算能力,属于中档题.8、C【解题分析】终边相同的角,相差360°的整数倍,据此即可求解.【题目详解】∵2022°=360°×5+222°,∴与2022°终边相同的角是222°.故选:C.9、D【解题分析】由否定的定义写出即可.【题目详解】p的否定是,.故选:D10、D【解题分析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.二、填空题:本大题共6小题,每小题5分,共30分。11、或.【解题分析】根据集合的子集个数确定出方程解的情况,由此求解出参数值.【题目详解】因为集合仅有两个不同子集,所以集合中仅有个元素,当时,,所以,满足要求;当时,,所以,此时方程解为,即,满足要求,所以或,故答案:或.12、【解题分析】利用平面向量平行的坐标表示进行求解.【题目详解】因为,所以,即;故答案:.【题目点拨】本题主要考查平面向量平行的坐标表示,两向量平行坐标分量对应成比例,侧重考查数学运算的核心素养.13、或【解题分析】有两种形式的圆柱的展开图,分别求出底面半径和高,分别求出体积.【题目详解】圆柱的侧面展开图是边长为2a与a的矩形,当母线为a时,圆柱的底面半径是,此时圆柱体积是;当母线为2a时,圆柱的底面半径是,此时圆柱的体积是,综上所求圆柱的体积是:或,故答案为或;本题考查圆柱的侧面展开图,圆柱的体积,容易疏忽一种情况,导致错误.14、(1),定义域为或;(2).【解题分析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【题目详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【题目点拨】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.15、【解题分析】结合指数函数、对数函数的知识确定正确答案.【题目详解】,,所以故答案为:16、【解题分析】根据题意,设满足题意得格点为,这6个回收点沿街道到回收站之间路程的和为,故,再分别求和的最小值时的即可得答案.【题目详解】解:设满足题意得格点为,这6个回收点沿街道到回收站之间路程和为,则,令,由于其去掉绝对值为一次函数,故其最小值在区间端点值,所以代入得,所以当时,取得最小值,同理,令,代入得所以当或时,取得最小值,所以当,或时,这6个回收点沿街道到回收站之间路程的和最小,由于是一个回收点,故舍去,所以当,这6个回收点沿街道到回收站之间路程的和最小,故格点为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)点为的中点【解题分析】(1)证面面垂直,可先由线面垂直入手即,进而得到面面垂直;(2)通过构造平行四边形,得到线面平行.解析:(1)连接,因为底面是菱形,,所以为正三角形.因为是的中点,所以,因为面,,∴,因为,,,所以.又,所以面⊥面.(2)当点为的中点时,∥面.事实上,取的中点,的中点,连结,,∵为三角形的中位线,∴∥且,又在菱形中,为中点,∴∥且,∴∥且,所以四边形平行四边形.所以∥,又面,面,∴∥面,结论得证.点睛:这个题目考查了线面平行的证明,线面垂直的证明.一般证明线面平行是从线线平行入手,通过构造平行四边形,三角形中位线,梯形底边等,找到线线平行,再证线面平行.证明线线垂直也可以从线面垂直入手.18、(Ⅰ)见解析;(Ⅱ).【解题分析】(1)由面面垂直的判定定理很容易得结论;(2)所求三棱锥底面积容易求得,是本题转化为求三棱锥的高,利用直线与平面所成的角为,作出线面角,进而可求得的值,则可得的长试题解析:(1)如图,因为三棱柱是直三棱柱,所以,又是正三角形的边的中点,所以又,因此平面而平面,所以平面平面(2)设的中点为,连结,因为是正三角形,所以又三棱柱是直三棱柱,所以因此平面,于是为直线与平面所成的角,由题设,,所以在中,,所以故三棱锥的体积考点:直线与平面垂直的判定定理;直线与平面所成的角;几何体的体积.19、(1);(2).【解题分析】(1)利用诱导公式直接化简即可,然后弦化切;(2)由(1)知,,对齐次式进行弦化切求值.【题目详解】(1)∵而,∴∵,∴,∴,∴.(2)..【题目点拨】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)选择合适的公式进行化简求值20、.【解题分析】设送报人到达的时间为X,小王离家去工作的时间为Y,(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,求出其面积,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}

求出其面积,根据几何概型的概率公式解之即可;试题解析:如图,设送报人到达的时间为,小王离家去工作的时间为.(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,面积为,事件表示小王离家前不能看到报纸,所构成的区域为即图中的阴影部分,面积为.这是一个几何概型,所以.答:小王离家前不能看到报纸的概率是0.125.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论