




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省牡丹江市海林朝鲜族中学2024届高一上数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=log2的定义域A.(,3) B.(,+∞)C.(,3) D.[,3]2.已知正实数满足,则最小值为A. B.C. D.3.已知,,,那么a,b,c的大小关系为()A. B.C. D.4.下列四组函数中,表示相同函数的一组是()A.,B.,C.,D.,5.北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是()A.249 B.C.17 D.6.若正数x,y满足,则的最小值为()A.4 B.C.8 D.97.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:)与时间t(单位:h)间的关系为,其中,k是常数.已知当时,污染物含量降为过滤前的,那么()A. B.C. D.8.若log2a<0,,则()A.a>1,b>0 B.a>1,b<0C.0<a<1,b>0 D.0<a<1,b<09.已知集合,,则集合A. B.C. D.10.若===1,则a,b,c的大小关系是()A.a>b>c B.b>a>cC.a>c>b D.b>c>a二、填空题:本大题共6小题,每小题5分,共30分。11.新高考选课走班“3+1+2”模式指的是:语文、数学、外语三门学科为必考科目,物理、历史两门科目必选一门,化学、生物、思想政治、地理四门科目选两门.已知在一次选课过程中,甲、乙两同学选择科目之间没有影响,在物理和历史两门科目中,甲同学选择历史的概率为,乙同学选择物理的概率为,那么在物理和历史两门科目中甲、乙两同学至少有1人选择物理的概率为______12.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是__.(请填写:相切、相交、相离)13.已知函数,则___________..14.已知向量,,且,则__________.15.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:.已知新丸经过50天后,体积变为.若一个新丸体积变为,则需经过的天数为______16.已知,若方程恰有个不同的实数解、、、,且,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:,(为自然对数的底数);(2)已知,求的值.18.已知实数是定义在上的奇函数.(1)求的值;(2)求函数的值域;(3)当时,恒成立,求实数的取值范围.19.已知函数.(1)若函数在区间内存在零点,求实数m的取值范围;(2)若关于x的方程有实数根,求实数m的取值范围.20.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.21.设函数,.用表示,中的较大者,记为.已知关于的不等式的解集为(1)求实数,的值,并写出的解析式;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由真数大于0,求解对分式不等式得答案;【题目详解】函数y=log2的定义域需满足故选A.【题目点拨】】本题考查函数的定义域及其求法,考查分式不等式的解法,是中档题2、A【解题分析】由题设条件得,,利用基本不等式求出最值【题目详解】由已知,,所以当且仅当时等号成立,又,所以时取最小值故选A【题目点拨】本题考查据题设条件构造可以利用基本不等式的形式,利用基本不等式求最值3、B【解题分析】根据指数函数单调性比较大小.【题目详解】因为在上是增函数,又,所以,所以,故选B.【题目点拨】本题考查利用指数函数单调性比较指数幂的大小,难度较易.对于指数函数(且):若,则是上增函数;若,则是上减函数.4、C【解题分析】根据相同函数的判断原则进行定义域的判断即可选出答案.【题目详解】解:由题意得:对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误;对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误;对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误.故选:C5、C【解题分析】根据古典概型概率的计算公式直接计算.【题目详解】由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况,其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749故选:C.6、C【解题分析】由已知可得,然后利用基本不等式可求得结果【题目详解】解:因为正数x,y满足,所以,当且仅当,即时取等号,所以的最小值为8,故选:C【题目点拨】此题考查基本不等式应用,利用了“1”的代换,属于基础题7、C【解题分析】根据题意列出指数式方程,利用指数与对数运算公式求出的值.【题目详解】由题意得:,即,两边取对数,,解得:.故选:C8、D【解题分析】,则;,则,故选D9、B【解题分析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【题目详解】由一元二次方程的解法化简集合,或,,或,故选B.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.10、D【解题分析】由求出的值,由求得的值,由=1求得的值,从而可得答案【题目详解】由,可得故,由,可得,故,由,可得,故,故选D【题目点拨】本题主要考查对数的定义,对数的运算性质的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】至少1人选择物理即为1人选择物理或2人都选择物理,由题分别得到甲选择物理的概率与乙选择历史的概率,进而求解即可.【题目详解】由题,设“在物理和历史两门科目中甲、乙两同学至少有1人选择物理”事件,则包括有1人选择物理,或2人都选择物理,因为甲同学选择历史的概率为,则甲同学选择物理的概率为,因为乙同学选择物理的概率为,则乙同学选择历史的概率为,故,故答案为:12、相交【解题分析】求得的圆心到直线的距离,与圆的半径比较大小,即可得出结论.【题目详解】圆的圆心为、半径为,圆心到直线的距离为,小于半径,所以直线和圆相交,故答案为相交.【题目点拨】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用判别式来解答.13、17【解题分析】根据分段函数解析式计算可得;【题目详解】解:因为,故答案为:14、【解题分析】根据共线向量的坐标表示,列出方程,即可求解.【题目详解】由题意,向量,,因为,可得,解得.故答案为:.15、75【解题分析】由题意,先算出,由此可算出一个新丸体积变为需经过的天数.【题目详解】由已知,得,∴设经过天后,一个新丸体积变为,则,∴,∴,故答案为:75.16、【解题分析】作出函数的图象以及直线的图象,利用对数的运算可求得的值,利用正弦型函数的对称性可求得的值,即可得解.【题目详解】作出函数的图象以及直线的图象如下图所示:由图可知,由可得,即,所以,,可得,当时,,由,可得,由图可知,点、关于直线对称,则,因此,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2).【解题分析】(1)由条件利用对数的运算性质求得要求式子的值.(2)由条件利用同角三角函数的基本关系平方即可求解【题目详解】(1)原式.(2)因为,两边同时平方,得.【题目点拨】本题主要考查对数的运算性质,同角三角函数的基本关系,熟记公式是关键,属于基础题18、(1);(2);(3).【解题分析】(1)由是定义在上的奇函数,利用可得的值;(2)化简利用指数函数的值域以及不等式的性质可得函数的值域;(3)应用参数分离可得利用换元法可得,,转化为,,转化为求最值即可求解.【题目详解】(1)因为是定义在上的奇函数,所以对于恒成立,所以,解得,当时,,此时,所以时,是奇函数.(2)由(1)可得,因为,可得,所以,所以,所以,所以函数的值域为;(3)由可得,即,可得对于恒成立,令,则,函数在区间单调递增,所以当时最大为,所以.所以实数的取值范围是.【题目点拨】方法点睛:求不等式恒成立问题常用分离参数法若不等式(是实参数)恒成立,将转化为或恒成立,进而转化为或,求的最值即可.19、(1);(2).【解题分析】(1)先得出函数在的单调性,再根据零点存在定理建立不等式组,解之可得实数m的取值范围.(2)由已知将原方程等价于存在实数x使成立.再根据基本不等式得出,由此可求得实数m的取值范围.【题目详解】解:(1)因为函数与在都是增函数,所以函数在也是增函数,因为函数在区间内存在零点,所以解得.所以实数m的取值范围为.(2)关于x的方程有实数根等价于关于x的方程有实数根,所以存在实数x使成立.因为(当且仅当,时取等号),所以,所以实数m的取值范围是.20、(1)(2)或.【解题分析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.代入即可求得,解得.再检验即可试题解析:(1)∵圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,∴圆的方程为.(2)设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.假如以为直径的圆能过原点,则.∵圆心到直线的距离为,∴.∴,解得.经检
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年铁道工程与管理专业资格考试试题及答案
- 2025年物流管理资格考试试题及解析
- 老龄化相关面试题及答案
- 托业模拟测试题及答案
- 2025年高中生化学期末考试试题及答案
- 35年java面试题及答案
- 雪球java面试题及答案
- 经济学微观经济学知识要点与试题
- 网络工程师职业素养在工作中的体现试题及答案
- 网络风险评估的步骤与工具试题及答案
- 2025中考语文常考作文押题主题附范文
- 河道漂流设计施工方案
- 2025年新媒体职位面试题及答案
- 《跨境电商》课件-跨境电商行业发展
- 2025年陕西煤业化工建设集团有限公司招聘笔试参考题库含答案解析
- 公立医院成本核算指导手册
- 餐饮连锁管理制度
- 产品制程不良率统计表
- 2024年01月广东2024年珠海华润银行社会招考(125)笔试历年参考题库附带答案详解
- 人教版小学数学三年级下册《奥数竞赛试卷》
- 《非遗苗族蜡染》少儿美术教育绘画课件创意教程教案
评论
0/150
提交评论