四川省眉山市仁寿一中南校区2024届高一数学第一学期期末学业水平测试试题含解析_第1页
四川省眉山市仁寿一中南校区2024届高一数学第一学期期末学业水平测试试题含解析_第2页
四川省眉山市仁寿一中南校区2024届高一数学第一学期期末学业水平测试试题含解析_第3页
四川省眉山市仁寿一中南校区2024届高一数学第一学期期末学业水平测试试题含解析_第4页
四川省眉山市仁寿一中南校区2024届高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省眉山市仁寿一中南校区2024届高一数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为奇函数,当时,,则()A.3 B.C.1 D.2.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}3.函数的图象大致为A. B.C. D.4.函数的值域为()A. B.C. D.5.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-26.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)7.设,其中、是正实数,且,,则与的大小关系是()A. B.C. D.8.设函数,其中,,,都是非零常数,且满足,则()A. B.C. D.9.若tanα=2,则的值为()A.0 B.C.1 D.10.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)二、填空题:本大题共6小题,每小题5分,共30分。11.下列命题中,正确命题的序号为______①单位向量都相等;②若向量,满足,则;③向量就是有向线段;④模为的向量叫零向量;⑤向量,共线与向量意义是相同的12.在△ABC中,,面积为12,则=______13.已知,则____________________.14.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______15.已知函数,,则函数的最大值为______.16.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,得到函数的图象,则函数的解析式为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络.其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元),仓库到车站的距离x(单位:千米,),其中与成反比,每月库存货物费(单位:万元)与x成正比;若在距离车站9千米处建仓库,则和分别为2万元和7.2万元.(1)求出与解析式;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?18.已知集合,.(1)若,求实数的值;(2)若,求实数的取值范围.19.如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.20.已知,且是第四象限角.(1)求和的值;(2)求的值;21.已知M(1,﹣1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据奇偶性和解析式可得答案.【题目详解】由题可知,故选:B2、B【解题分析】根据集合的补集和交集的概念得到结果即可.【题目详解】全集,集合,,;,故答案为B.【题目点拨】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算3、A【解题分析】利用函数为奇函数及在时函数值正负,即可得答案.【题目详解】由于函数的定义域关于原点对称,且,所以函数的奇函数,排除B,C选项;又因为,故排除D选项.故选:A.【题目点拨】本题考查根据函数的解析式选择函数的图象,考查数形结合思想,求解时注意根据解析式发现函数为奇函数及特殊点函数值的正负.4、D【解题分析】根据分段函数的解析式,结合基本初等函数的单调,分别求得两段上函数的值域,进而求得函数的值域.【题目详解】当时,单调递减,此时函数的值域为;当时,在上单调递增,在上单调递减,此时函数的最大值为,最小值为,此时值域为,综上可得,函数值域为.故选:D.5、D【解题分析】由奇函数定义得,从而求得,然后由计算【题目详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【题目点拨】本题考查奇函数的定义,掌握奇函数的概念是解题关键.6、A【解题分析】可以是一个正方体上面一个球,也可以是一个圆柱上面一个球7、B【解题分析】利用基本不等式结合二次函数的基本性质可得出与的大小关系.【题目详解】因为、是正实数,且,则,,因此,.故选:B.8、C【解题分析】代入后根据诱导公式即可求出答案【题目详解】解:由题,∴,∴,故选:C【题目点拨】本题主要考查三角函数的诱导公式的应用,属于基础题9、B【解题分析】将目标是分子分母同时除以,结合正切值,即可求得结果.【题目详解】==.故选:【题目点拨】本题考查齐次式的化简和求值,属基础题.10、A【解题分析】考点:奇偶性与单调性的综合分析:根据题目条件,画出一个函数图象,再观察即得结果解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故选A二、填空题:本大题共6小题,每小题5分,共30分。11、④⑤【解题分析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案.【题目详解】对于①.单位向量方向不同时,不相等,故不正确.对于②.向量,满足时,若方向不同时,不相等,故不正确.对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量.向量可以用有向线段来表示,二者不等同,故不正确,对于④.根据零向量的定义,正确.对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确.故答案为:④⑤12、【解题分析】利用面积公式即可求出sinC.使用二倍角公式求出cos2C【题目详解】由题意,在中,,,面积为12,则,解得∴故答案为【题目点拨】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题13、7【解题分析】将两边平方,化简即可得结果.【题目详解】因为,所以,两边平方可得,所以,故答案为7.【题目点拨】本题主要考查指数的运算,意在考查对基础知识的掌握情况,属于简单题.14、【解题分析】讨论函数在的单调性即可得解.【题目详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:15、##【解题分析】根据分段函数的定义,化简后分别求每段上函数的最值,比较即可得出函数最大值.【题目详解】当时,即或,解得或,此时,当时,即时,,综上,当时,,故答案为:16、【解题分析】利用函数的图象变换规律,即可得到的解析式【题目详解】函数的图象向右平移个单位,可得到,再将图象上每一点的横坐标缩短到原来的倍,可得到.故.【题目点拨】本题考查了三角函数图象的平移变换,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元【解题分析】(1)设出与以及与x的解析式,将x=9的费用代入,求得答案;(2)列出两项费用之和的表达式,利用基本不等式求得其最小值,可得答案.【小问1详解】设,,其中,当时,,.解得,,所以,.【小问2详解】设两项费用之和为z(单位:万元)则,当且仅当,即时,“”成立,所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元.18、(1)(2)或【解题分析】(1)求出集合,再根据列方程求解即可;(2)根据分,讨论求解.【小问1详解】由已知得,解得;【小问2详解】当时,,得当时,或,解得或,综合得或.19、(1)见解析(2)见解析【解题分析】(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC试题解析:证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因为平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直20、(1),;(2).【解题分析】(1)根据象限和公式求出的正弦,再用倍角公式计算即可(2)求出角正切值,再展开,代入计算即可.【题目详解】解:(1),由得,,又是第四象限角,,,,.(2)由(1)可知,,.21、(1)(2)【解题分析】(1)设Q(x,y),根据PQ⊥MN得出,然后由PN∥MQ得出,解方程组即可求出Q的坐标;(2)设Q(x,0)由∠NQP=∠NPQ得出kNQ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论