




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市五十七中学2024届高一上数学期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个2.已知a,b∈(0,+∞),函数f(x)=alog2x+b的图象经过点(4,1)A.6-22 B.C.4+22 D.3.已知幂函数的图像过点,若,则实数的值为A. B.C. D.4.方程组的解集是()A. B.C. D.5.函数在一个周期内的图像如图所示,此函数的解析式可以是()A. B.C. D.6.若,,则的值为A. B.C. D.7.设函数的最小值为-1,则实数的取值范围是A. B.C. D.8.已知关于的方程()的根为负数,则的取值范围是()A. B.C. D.9.已知函数,记集合,,若,则的取值范围是()A.[0,4] B.(0,4)C.[0,4) D.(0,4]10.设平面向量满足,且,则的最大值为A.2 B.3C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的单调增区间为________.12.已知圆,圆,则两圆公切线的方程为__________13.已知,若,则实数的取值范围为__________14.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.15.已知幂函数(为常数)的图像经过点,则__________16.已知,则____________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线经过直线与直线的交点,并且垂直于直线(Ⅰ)求交点的坐标;(Ⅱ)求直线的方程18.如图所示,在中,已知,,.(1)求的模;(2)若,,求的值.19.函数的定义域.20.已知函数,(1)若,求函数的值域;(2)已知,且对任意的,不等式恒成立,求的取值范围21.已知直线l经过点.(1)若在直线l上,求l的一般方程;(2)若直线l与直线垂直,求l的一般方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【题目详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【题目点拨】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题2、D【解题分析】由函数f(x)=alog2x+b的图象经过点(4,1)得到2a+b=1【题目详解】因为函数f(x)=alog2x+b图象经过点(4,1),所以有alog24+b=1⇒2a+b=1,因为a,b∈(0,+∞),所以有(故选:D【题目点拨】本题考查了基本不等式的应用,用“1”巧乘是解题的关键,属于一般题.3、D【解题分析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【题目点拨】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.4、A【解题分析】解出方程组,写成集合形式.【题目详解】由可得:或.所以方程组的解集是.故选:A5、A【解题分析】根据图象,先确定以及周期,进而得出,再由求出,即可得到函数解析式.【题目详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A6、A【解题分析】由两角差的正切公式展开计算可得【题目详解】解:,,则,故选A【题目点拨】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础7、C【解题分析】当时,为增函数,最小值为,故当时,,分离参数得,函数开口向下,且对称轴为,故在递增,,即.考点:分段函数的最值.【思路点晴】本题主要考查分段函数值域问题,由于函数的最小值为,所以要在两段函数图象都要讨论最小值.首先考虑没有参数的一段,当时,为增函数,最小值为.由于这一段函数值域已经包括了最小值,故当时,值域应该不小于,分离常数后利用二次函数图象与性质可求得参数的取值范围.8、D【解题分析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【题目详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.9、C【解题分析】对分成和两种情况进行分类讨论,结合求得的取值范围.【题目详解】当时,,此时,符合题意.当时,,由解得或,由得或,其中,,和都不是这个方程的根,要使,则需.综上所述,的取值范围是.故选:C10、C【解题分析】设,∵,且,∴∵,当且仅当与共线同向时等号成立,∴的最大值为.选C点睛:由于向量,且,因此向量确定,这是解题的基础也是关键.然后在此基础上根据向量模的三角不等式可得的范围,解题时要注意等号成立的条件二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求出给定函数的定义域,由对数函数、正弦函数单调性结合复合函数单调性求解作答.【题目详解】依题意,,则,解得,函数中,由得,即函数在上单调递增,当时,函数在上单调递增,又函数在上单调递增,所以函数的单调增区间为.故答案为:【题目点拨】关键点睛:函数的单调区间是定义域的子区间,求函数的单调区间,正确求出函数的定义域是解决问题的关键.12、【解题分析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.13、【解题分析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【题目详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【题目点拨】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题14、2【解题分析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【题目详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:15、3【解题分析】设,依题意有,故.16、7【解题分析】将两边平方,化简即可得结果.【题目详解】因为,所以,两边平方可得,所以,故答案为7.【题目点拨】本题主要考查指数的运算,意在考查对基础知识的掌握情况,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】(I)联立两条直线的方程,解方程组可求得交点坐标,已知直线的斜率为,和其垂直的直线斜率是,根据点斜式可写出所求直线的方程.试题解析:(Ⅰ)由得所以(,).(Ⅱ)因为直线与直线垂直,所以,所以直线的方程为.18、(1)(2)【解题分析】(1)根据向量数量积定义可得,再根据向量加法几何意义以及模性质可得结果(2)先根据向量加减法则将化为,再根据向量数量积定义求值试题解析:(1)==;(2)因为,,所以.19、【解题分析】函数的定义域是,由对数函数的性质能够求出结果【题目详解】整理得解得函数的定义域为【题目点拨】本题考查对数函数的定义域,是基础题.解题时要认真审题,注意对数性质的合理运用20、(1);(2)当时,;当且时,.【解题分析】(1)由题设,令则,即可求值域.(2)令,将问题转化为在上恒成立,再应用对勾函数的性质,讨论、,分别求出的取值范围【小问1详解】因为,设,则,因为,所以,即当时,,当或时,,所以的值域为.【小问2详解】因为,所以,又可化成,因为,所以,所以,令,则,,依题意,时,恒成立,设,,当时,当且仅当,,故;当,时,在上单调递增,当时,,故,综上所述:当时,;当且时,.【题目点拨】关键点点睛:应用换元法及参变分离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瑞新安全培训课件
- 理财课件简介及讲解
- 安全文明施工课件教学
- 球场安全意识培训内容课件
- 登山步道开发工程方案(3篇)
- 农业无人机租赁市场细分领域竞争格局与2025年市场细分领域增长潜力分析
- 安全教育最后一课课件
- 安全教育日培训记录课件
- 格力风管机工程方案(3篇)
- 安全教育教师培训笔记课件
- 风力发电基础施工合同范本
- ktv承包经营合同范文
- 《实战电池性能测试》课件
- 2025年贵州蔬菜集团有限公司招聘笔试参考题库含答案解析
- 2025年1月浙江省高二物理学业水平考试试卷试题(含答案详解)
- 2024年全国职业院校技能大赛高职组(环境检测与监测赛项)考试题库(含答案)
- 实验-大肠杆菌感受态细胞的制备及转化
- 2025年中考语文阅读复习:理解词语含义(含练习题及答案)
- GB/T 44421-2024矫形器配置服务规范
- 磷酸哌嗪宝塔糖的毒理学研究
- 【课件】2025届高三生物一轮复习备考策略研讨
评论
0/150
提交评论