2024届河北省秦皇岛市青龙满族自治县木头凳中学高一数学第一学期期末复习检测模拟试题含解析_第1页
2024届河北省秦皇岛市青龙满族自治县木头凳中学高一数学第一学期期末复习检测模拟试题含解析_第2页
2024届河北省秦皇岛市青龙满族自治县木头凳中学高一数学第一学期期末复习检测模拟试题含解析_第3页
2024届河北省秦皇岛市青龙满族自治县木头凳中学高一数学第一学期期末复习检测模拟试题含解析_第4页
2024届河北省秦皇岛市青龙满族自治县木头凳中学高一数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省秦皇岛市青龙满族自治县木头凳中学高一数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=的定义域是()A. B.C. D.2.已知,,,则的大小关系是()A. B.C. D.3.若,,则一定有()A. B.C. D.以上答案都不对4.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.5.点直线中,被圆截得的最长弦所在的直线方程为()A. B.C. D.6.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是A. B.C. D.7.下列与的终边相同的角的集合中正确的是()A. B.C. D.8.若函数图象上所有点的横坐标向右平移个单位,纵坐标保持不变,得到的函数图象关于轴对称,则的最小值为()A. B.C. D.9.下列函数,在其定义域内既是奇函数又是增函数的是A. B.C. D.10.已知函数满足,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.____12.函数的定义域为_________.13.已知函数,若,则_____14.函数的单调递增区间是_________15.若“”是“”的充要条件,则实数m的取值是_________16.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,且.(1)的值;(2)若,,且,求的值18.计算:19.如图,在正方体中,为棱、的三等分点(靠近A点).求证:(1)平面;(2)求证:平面平面.20.在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量单位:万件与售价单位:元之间满足函数关系,A的单件成本单位:元与销量y之间满足函数关系当产品A的售价在什么范围内时,能使得其销量不低于5万件?当产品A的售价为多少时,总利润最大?注:总利润销量售价单件成本21.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据偶次方根的被开方数为非负数,对数的真数大于零列不等式,由此求得函数的定义域.【题目详解】依题意,所以的定义域为.故选:A2、A【解题分析】利用对数函数和指数函数的性质求解【题目详解】解:∵,∴,∵,∴,∵,∴,即,∴故选:A3、D【解题分析】对于ABC,举例判断,【题目详解】对于AB,若,则,所以AB错误,对于C,若,则,所以C错误,故选:D4、A【解题分析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【题目详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【题目点拨】三角函数求最值或者求值域一定要先将函数化成的形函数.5、A【解题分析】要使得直线被圆截得的弦长最长,则直线必过圆心,利用斜率公式求得斜率,结合点斜式方程,即可求解.【题目详解】由题意,圆,可得圆心坐标为,要使得直线被圆截得的弦长最长,则直线必过圆心,可得直线的斜率为,所以直线的方程为,即所求直线的方程为.故选:A.6、C【解题分析】设出函数的解析式,根据幂函数y=f(x)的图象过点(4,2),构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象【题目详解】设幂函数的解析式为y=xa,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项故选C【题目点拨】本题考查的知识点是函数解析式的求解及幂函数图象及其与指数的关系,其中对于已经知道函数类型求解析式的问题,要使用待定系数法7、C【解题分析】由任意角的定义判断【题目详解】,故与其终边相同的角的集合为或角度制和弧度制不能混用,只有C符合题意故选:C8、B【解题分析】由题设可得,根据已知对称性及余弦函数的性质可得,即可求的最小值.【题目详解】由题设,关于轴对称,∴且,则,,又,∴的最小值为.故选:B.9、A【解题分析】由幂函数,指数函数与对数函数的性质可得【题目详解】解:根据题意,依次分析选项:对于A,,其定义域为R,在R上既是奇函数又是增函数,符合题意;对于B,,是对数函数,不是奇函数,不符合题意;对于C,,为指数函数,不为奇函数;对于D,,为反比例函数,其定义域为,在其定义域上不是增函数,不符合题意;故选A【题目点拨】本题考查函数的奇偶性与单调性,是基础题,掌握幂函数,指数函数与对数函数的性质是解题关键10、D【解题分析】由已知可得出,利用弦化切可得出关于的方程,结合可求得的值.【题目详解】因为,且,则,,可得,解得.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解题分析】根据和差公式得到,代入化简得到答案.【题目详解】故答案为:【题目点拨】本题考查了和差公式,意在考查学生的计算能力.12、【解题分析】根据根式、对数的性质有求解集,即为函数的定义域.【题目详解】由函数解析式知:,解得,故答案为:.13、-2020【解题分析】根据题意,设g(x)=f(x)+1=asinx+btanx,分析g(x)为奇函数,结合函数的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,计算可得答案【题目详解】根据题意,函数f(x)=asinx+btanx﹣1,设g(x)=f(x)+1=asinx+btanx,有g(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),则函数g(x)为奇函数,则g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,则f(2)=﹣2020;故答案为-2020【题目点拨】本题考查函数奇偶性的性质以及应用,构造函数g(x)=f(x)+1是解题的关键,属于中档题14、【解题分析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.15、0【解题分析】根据充要条件的定义即可求解.【题目详解】,则{x|}={x|},即.故答案为:0.16、①.0②.【解题分析】利用坐标法可得,结合条件及完全平方数的最值即得.【题目详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)首先应用向量数量积坐标公式求得,结合,求得,得到结果;(2)结合题的条件,利用同角三角函数关系式求得,结合角的范围以及(1)的结论,求得,再应用余弦和角公式求得的值,结合角的范围求得,得到结果.【题目详解】(1)因为,,所以因为,所以,即.(2)因为,,所以.因为,,所以.因为,所以,所以.因为,,所以,所以.【题目点拨】该题考查的是有关三角恒等变换的问题,涉及到的知识点有向量数量积坐标公式,同角三角函数关系式,余弦的和角公式,利用角的三角函数值的大小,结合角的范围求角的大小,属于简单题目.18、(1)(2)0【解题分析】(1)根据对数的运算法则和幂的运算法则计算(2)根据特殊角三角函数值计算【题目详解】解:;【题目点拨】本题考查指数与对数的运算,考查三角函数的计算.属于基础题19、(1)见解析;(2)见解析.【解题分析】(1)欲证:平面,根据直线与平面平行的判定定理可知,只需证与平面内一条直线平行,连接,可知,则,又平面,平面,满足定理所需条件;(2)欲证:平面平面,根据面面垂直的判定定理可知,在平面内一条直线与平面垂直,而平面,平面,则,,满足线面垂直的判定定理则平面,而平面,满足定理所需条件【题目详解】(1)证明:连接,在正方体中,对角线,又因为、为棱、的三等分点,所以,则,又平面,平面,所以平面(2)因为在正方体中,因为平面,而平面,所以,又因为在正方形中,,而,平面,平面,所以平面,又因为平面,所以平面平面【题目点拨】本题主要考查线面平行的判定定理和线面垂直的判定定理,以及考查对基础知识的综合应用能力和基本定理的掌握能力20、(1)(2)14元【解题分析】(1)根据题中所给的解析式,分情况列出其满足的不等式组,求得结果;(2)根据题意,列出利润对应的解析式,分段求最值,最后比较求得结果.【题目详解】(1)由得,或解得,或.即.答:当产品A的售价时,其销量y不低于5万件(2)由题意,总利润①当时,,当且仅当时等号成立.②当时,单调递减,所以,时,利润最大.答:当产品A的售价为14元时,总利润最大【题目点拨】该题考查的是有关函数的应用问题,涉及到的知识点有根据题意列出函数解析式,根据函数解析式求函数的最值,注意认真分析题意,最后求得结果.21、(1)证明见解析(2)奇函数,证明见解析(3)【解题分析】(1)根据函数单调性的定义,准确运算,即可求解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论