辽宁省2024届高一数学第一学期期末教学质量检测试题含解析_第1页
辽宁省2024届高一数学第一学期期末教学质量检测试题含解析_第2页
辽宁省2024届高一数学第一学期期末教学质量检测试题含解析_第3页
辽宁省2024届高一数学第一学期期末教学质量检测试题含解析_第4页
辽宁省2024届高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省2024届高一数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点直线中,被圆截得的最长弦所在的直线方程为()A. B.C. D.2.已知,则为()A. B.2C.3 D.或33.下列命题中正确的是()A. B.C. D.4.在中,角、、的对边分别为、、,已知,,,则A. B.C. D.5.已知函数(其中)的图象如图所示,则函数的图像是()A. B.C. D.6.函数的最小值和最小正周期为()A.1和2π B.0和2πC.1和π D.0和π7.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.28.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数,则函数图象的对称中心为()A. B.C. D.9.如图,正方体的棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的是()A. B.平面C.三棱锥的体积为定值 D.存在点,使得平面平面10.“角为第二象限角”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.计算:_______12.某同学在研究函数时,给出下列结论:①对任意成立;②函数的值域是;③若,则一定有;④函数在上有三个零点.则正确结论的序号是_______.13.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______14.已知且,则的最小值为______________15.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.16.给出如下五个结论:①存在使②函数是偶函数③最小正周期为④若是第一象限的角,且,则⑤函数的图象关于点对称其中正确结论序号为______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若幂函数在其定义域上是增函数.(1)求的解析式;(2)若,求的取值范围.18.已知函数满足,且.(1)求a和函数的解析式;(2)判断在其定义域的单调性.19.已知.(1)若是奇函数,求的值,并判断的单调性(不用证明);(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.20.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点为圆心的两个同心圆弧和延长后通过点,的两条线段围成.设圆弧和圆弧所在圆的半径分别为米,圆心角为θ(弧度)(1)若,,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?21.已知.(1)若关于x的不等式的解集为区间,求a的值;(2)设,解关于x的不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】要使得直线被圆截得的弦长最长,则直线必过圆心,利用斜率公式求得斜率,结合点斜式方程,即可求解.【题目详解】由题意,圆,可得圆心坐标为,要使得直线被圆截得的弦长最长,则直线必过圆心,可得直线的斜率为,所以直线的方程为,即所求直线的方程为.故选:A.2、C【解题分析】根据分段函数的定义域求解.【题目详解】因为,所以故选:C3、A【解题分析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【题目详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.4、B【解题分析】分析:直接利用余弦定理求cosA.详解:由余弦定理得cosA=故答案为B.点睛:(1)本题主要考查余弦定理在解三角形中的应用,意在考查学生对余弦定理的掌握水平.(2)已知三边一般利用余弦定理:.5、A【解题分析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【题目详解】由图象可知:,因为,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A6、D【解题分析】由正弦函数的性质即可求得的最小值和最小正周期【题目详解】解:∵,∴当=﹣1时,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分别是:,π故选D【题目点拨】本题考查正弦函数的周期性与最值,熟练掌握正弦函数的图象与性质是解题关键,属于中档题7、A【解题分析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【题目详解】点关于坐标原点的对称点是故选:A8、A【解题分析】根据题意并结合奇函数的性质即可求解.【题目详解】由题意得,设函数图象的对称中心为,则函数为奇函数,即,则,解得,故函数图象的对称中心为.故选:.9、D【解题分析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明,再证明平面即可.对C,根据三棱锥以为底,且同底高不变,故体积不变判定即可.对D,根据与平面有交点判定即可.【题目详解】在A中,因为分别是的中点,所以,故A正确;在B中,因为,,故,故.故,又有,所以平面,故B正确;在C中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,故C正确.在D中,与平面有交点,所以不存在点,使得平面平面,故D错误.故选:D.【题目点拨】方法点睛:本题考查空间点线面位置关系,考查棱锥的体积,考查线面垂直的判定定理的应用,判断线面垂直的方法主要有:

线面垂直的判定定理,直线与平面内的两条相交直线垂直;

面面垂直的性质定理,若两平面互相垂直,则在一个平面内垂直于交线的垂直于另一个平面;

线面垂直的性质定理,两条平行线中有一条与平面垂直,则另一条也与平面垂直;

面面平行的性质定理,直线垂直于两平行平面之一,必然垂直于另一个平面10、B【解题分析】利用充分条件和必要条件的定义判断.【题目详解】当角为第二象限角时,,所以,故充分;当时,或,所以在第二象限或在第三象限,故不必要;故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求出的值,求解计算即可.【题目详解】故答案为:12、①②③【解题分析】由奇偶性判断①,结合①对,,三种情况讨论求值域,判断②,由单调性判断③,由③可知的图像与函数的图像只有两个交点,进而判断④,从而得出答案【题目详解】①,即,故正确;②当时,,由①可知当时,,当时,,所以函数的值域是,正确;③当时,,由反比例函数的单调性可知,在上是增函数,由①可知在上也是增函数,所以若,则一定有,正确;④由③可知的图像与函数的图像只有两个交点,故错误综上正确结论的序号是①②③【题目点拨】本题考查函数的基本性质,包括奇偶性,单调性,值域等,属于一般题13、【解题分析】由条件可得函数的单调性,结合,分和利用单调性可解.【题目详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:14、9【解题分析】因为且,所以取得等号,故函数的最小值为9.,答案为9.15、【解题分析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【题目详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【题目点拨】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角16、②③【解题分析】利用正弦函数的图像与性质,逐一判断即可.【题目详解】对于①,,,故错误;对于②,,显然为偶函数,故正确;对于③,∵y=sin(2x)的最小正周期为π,∴y=|sin(2x)|最小正周期为.故正确;对于④,令α,β,满足,但,故错误;对于⑤,令则故对称中心为,故错误.故答案为:②③【题目点拨】本题主要考查三角函数图象与性质,考查辅助角公式和诱导公式、正弦函数的图象的对称性和单调性,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解题分析】(1)根据幂函数的概念,以及幂函数单调性,求出,即可得出解析式;(2)根据函数单调性,将不等式化为,求解,即可得出结果.【题目详解】(1)因为是幂函数,所以,解得或,又是增函数,即,,则;(2)因为为增函数,所以由可得,解得或的取值范围是或.18、(1);;(2)在其定义域为单调增函数.【解题分析】(1)由,可得,再由,可求出的值,从而可得函数的解析式;(2)利用函数的单调性定义进行判断即可【题目详解】解:(1)由,得,,得;所以;(2)该函数的定义域为,令,所以,所以,因为,,所以,所以在其定义域为单调增函数.19、(1)答案见解析;(2)【解题分析】(1)函数为奇函数,则,据此可得,且函数在上单调递增;(2)原问题等价于在区间(0,1)上有两个不同的根,换元令,结合二次函数的性质可得的取值范围是.试题解析:(1)因为是奇函数,所以,所以;在上是单调递增函数;(2)

在区间(0,1)上有两个不同的零点,等价于方程在区间(0,1)上有两个不同的根,即方程在区间(0,1)上有两个不同的根,所以方程在区间上有两个不同的根,画出函数在(1,2)上的图象,如下图,由图知,当直线y=a与函数的图象有2个交点时,所以的取值范围为.点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用20、(1);(2)当线段的长为5米时,花坛的面积最大.【解题分析】(1)根据扇形的面积公式,求出两个扇形面积之差就是所求花坛的面积即可;(2)利用弧长公式根据预算费用总计1200元可得到等式,再求出花坛的面积的表达式,结合得到的等式,通过配方法可以求出面积最大时,线段AD的长度.【题目详解】(1)设花坛面积为S平方米.答:花坛的面积为;(2)圆弧长为米,圆弧的长为米,线段的长为米由题意知,即*,,由*式知,,记则所以=当时,取得最大值,即时,花坛的面积最大,答:当线段的长为5米时,花坛的面积最大.【题目点拨】本题考查了弧长公式和扇形面积公式,考查了数学阅读能力,考查了数学运算能力.21、(1);(2)答案见解析.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论