2024届山东省胶州市第一中学等高一上数学期末检测试题含解析_第1页
2024届山东省胶州市第一中学等高一上数学期末检测试题含解析_第2页
2024届山东省胶州市第一中学等高一上数学期末检测试题含解析_第3页
2024届山东省胶州市第一中学等高一上数学期末检测试题含解析_第4页
2024届山东省胶州市第一中学等高一上数学期末检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省胶州市第一中学等高一上数学期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题p:∀x∈N,x3>x2的否定形式¬p为()A.∀x∈N,x3≤x2 B.∃x∈N,x3>x2C.∃x∈N,x3<x2 D.∃x∈N,x3≤x22.若偶函数在区间上单调递增,且,则不等式的解集是()A. B.C. D.3.已知向量,,且,则A. B.C. D.4.已知函数的定义域是,那么函数在区间上()A.有最小值无最大值 B.有最大值无最小值C.既有最小值也有最大值 D.没有最小值也没有最大值5.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q6.已知,则()A. B.C. D.的取值范围是7.()A B.C. D.8.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣39.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为A. B.C. D.10.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为________12.若,则_____13.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______14.若圆锥的侧面展开图是圆心角为的扇形,则该圆锥的侧面积与底面积之比为___________.15.已知,若,则实数的取值范围为__________16.茎叶图表示的是甲,乙两人在5次综合测评中的成绩,记甲,乙的平均成绩分别为a,b,则a,b的大小关系是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,求下列各式的值.(1);(2).18.已知.(1)若,,求x的值;(2)若,求的最大值和最小值.19.第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会共有58个国家和3个国际组织参加国家展(国家展今年首次线上举办),来自127个国家和地区的近3000家参展商亮相企业展.更多新产品、新技术、新服务“全球首发,中国首展”专(业)精(品)尖(端)特(色)产品精华荟萃,某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x千台空调,需另投入资金R万元,且经测算,当生产10千台空调需另投入的资金R=4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完(1)求2022年企业年利润W(万元)关于年产量x(千台)的函数关系式;(2)2022年产量为多少(千台)时,企业所获年利润最大?最大年利润多少?(注:利润=销售额-成本)20.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程21.已知函数(,且).(1)求的值,并证明不是奇函数;(2)若,其中e是自然对数的底数,证明:存在不为0的零点,并求.注:设x为实数,表示不超过x的最大整数.参考数据:,,,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据含有一个量词命题的否定的定义求解.【题目详解】因为命题p:∀x∈N,x3>x2的是全称量词命题,其否定是存在量词命题,所以¬p:∃x∈N,x3≤x2故选:D【题目点拨】本题主要考查含有一个量词命题的否定,还考查了理解辨析的能力,属于基础题.2、D【解题分析】由偶函数定义可确定函数在上的单调性,由单调性可解不等式.【题目详解】由于函数是偶函数,在区间上单调递增,且,所以,且函数在上单调递减.由此画出函数图象,如图所示,由图可知,的解集是.故选:D.【题目点拨】本题考查函数的奇偶性与单调性,属于基础题.3、D【解题分析】分析:直接利用向量垂直的坐标表示得到m的方程,即得m的值.详解:∵,∴,故答案为D.点睛:(1)本题主要考查向量垂直的坐标表示,意在考查学生对该这些基础知识的掌握水平.(2)设=,=,则4、A【解题分析】依题意不等式的解集为,即可得到且,再根据二次函数的性质计算在区间上的单调性,即可得到函数的最值;【题目详解】解:因为函数的定义域是,即不等式的解集为,所以且,即,所以,函数开口向上,对称轴为,在上单调递减,在上单调递增,所以,没有最大值;故选:A5、B【解题分析】定性分析即可得到答案【题目详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路.故选:B6、B【解题分析】取判断A;由不等式的性质判断BC;由基本不等式判断D.【题目详解】当时,不成立,A错误.因为,所以,,B正确,C错误.当,时,,当且仅当时,等号成立,而,D错误故选:B7、A【解题分析】由根据诱导公式可得答案.【题目详解】故选:A8、D【解题分析】等价于二次函数的最大值不小于零,即可求出答案.【题目详解】设,,使得不等式成立,须,即,或,解得.故选:D【题目点拨】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.9、C【解题分析】连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.10、C【解题分析】利用平面向量的线性运算及平面向量的基本定理求解即可【题目详解】∵∴∵∴=∴=,∴故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值.【题目详解】【题目点拨】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力.12、【解题分析】首先求函数,再求的值.【题目详解】设,则所以,即,,.故答案为:13、①.②.【解题分析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【题目详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.14、【解题分析】设圆锥的底面半径为r,母线长为l,根据圆锥的侧面展开图是圆心角为的扇形,有,即,然后分别求得侧面积和底面积即可.【题目详解】设圆锥的底面半径为r,母线长为l,由题意得:,即,所以其侧面积是,底面积是,所以该圆锥的侧面积与底面积之比为故答案为:15、【解题分析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【题目详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【题目点拨】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题16、【解题分析】分别计算出甲,乙的平均分,从而可比较a,b的大小关系.【题目详解】易知甲的平均分为,乙的平均分为,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2(2)【解题分析】(1)依据三角函数诱导公式化简后去求解即可解决;(2)转化为求三角函数齐次式的值即可解决.【小问1详解】原式.【小问2详解】原式.18、(1)或;(2)的最大值和最小值分别为:,.【解题分析】(1)利用三角恒等变换化简函数,再利用给定的函数值及x的范围求解作答.(2)求出函数相位的范围,再结合正弦函数的性质计算作答.【小问1详解】依题意,,由,即得:,而,即,于是得或,解得或,所以x的值是或.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以的最大值和最小值分别为:,.19、(1)(2)当2022年产量为100千台时,企业的利润最大,最大利润为8990万元【解题分析】(1)分段讨论即可;(2)分段求最值,再比较即可【小问1详解】由题意知,当x=10时,所以a=300当时,当时,所以【小问2详解】当0<x<40时,,所以,当x=30时,W有最大值,最大值为8740当时,当且仅当即x=100时,W有最大值,最大值为8990因为8740<8990,所以当2022年产量为100千台时,企业的利润最大,最大利润为8990万元.20、(1);(2)【解题分析】(1)先求出与的交点,再利用两直线平行斜率相等求直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论