版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市徐汇区上海中学2024届高一上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图象过点,若,则实数的值为()A. B.C. D.42.“”是“函数为偶函数”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.高斯是德国著名的数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B.C. D.4.已知,若,则A.1 B.2C.3 D.45.若,则的最小值为()A. B.C. D.6.幂函数,当时为减函数,则实数的值为A.或2 B.C. D.7.已知函数,则,()A.4 B.3C. D.8.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限9.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.10.已知,则a,b,c的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下列说法正确的序号是__________________.(写出所有正确的序号)①正切函数在定义域内是增函数;②已知函数的最小正周期为,将的图象向右平移个单位长度,所得图象关于轴对称,则的一个值可以是;③若,则三点共线;④函数的最小值为;⑤函数在上是增函数,则的取值范围是.12.计算_______.13.已知函数=___________14.若函数在区间上为增函数,则实数的取值范围为______.15.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________16.的边的长分别为,且,,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.(1)证明:平面;(2)证明:平面;(3)求三棱锥的体积.18.已知函数,,将图象向右平移个单位,得到函数的图象.(1)求函数的解析式,并求在上的单调递增区间;(2)若函数,求的周期和最大值.19.已知集合,其中,集合若,求;若,求实数的取值范围20.已知二次函数,若不等式的解集为,且方程有两个相等的实数根.(1)求的解析式;(2)若,成立,求实数m的取值范围.21.直线与直线平行,且与坐标轴构成的三角形面积是24,求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据已知条件,推出,再根据,即可得出答案.【题目详解】由题意得:,解得,所以,解得:,故选:D【题目点拨】本题考查幂函数的解析式,属于基础题.2、A【解题分析】根据充分必要条件定义判断【题目详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A3、B【解题分析】先利用换元思想求出函数的值域,再分类讨论,根据新定义求得函数的值域【题目详解】(),令,可得,在上递减,在上递增,时,有最小值,又因为,所以当时,,即函数的值域为,时,;时,;时,;的值域是故选:B【题目点拨】思路点睛:新定义是通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.4、A【解题分析】构造函数,则为奇函数,根据可求得,进而可得到【题目详解】令,则为奇函数,且,由题意得,∴,∴,∴.故选A【题目点拨】本题考查运用奇函数的性质求函数值,解题的关键是根据题意构造函数,体现了转化思想在解题中的应用,同时也考查观察、构造的能力,属于基础题5、B【解题分析】由,根据基本不等式,即可求出结果.【题目详解】因为,所以,,因此,当且仅当,即时,等号成立.故选:B.6、C【解题分析】∵为幂函数,∴,即.解得:或.当时,,在上为减函数;当时,,在上为常数函数(舍去),∴使幂函数为上的减函数的实数的值.故选C.考点:幂函数的性质.7、D【解题分析】根据分段函数解析式代入计算可得;【题目详解】解:因为,,所以,所以故选:D8、B【解题分析】斜率为,截距,故不过第二象限.考点:直线方程.9、C【解题分析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【题目详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.10、B【解题分析】首先求出、,即可判断,再利用作差法判断,即可得到,再判断,即可得解;【题目详解】解:由,所以,可知,又由,有,又由,有,可得,即,故有.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、③⑤【解题分析】对每一个命题逐一判断得解.【题目详解】①正切函数在内是增函数,所以该命题是错误的;②因为函数的最小正周期为,所以w=2,所以将的图象向右平移个单位长度得到,所得图象关于轴对称,所以,所以的一个值不可以是,所以该命题是错误的;③若,因为,所以三点共线,所以该命题是正确的;④函数=,所以sinx=-1时,y最小为-1,所以该命题是错误的;⑤函数在上是增函数,则,所以的取值范围是.所以该命题是正确的.故答案为③⑤【题目点拨】本题主要考查正切函数的单调性,考查正弦型函数的图像和性质,考查含sinx的二次型函数的最值的计算,考查对数型函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.12、【解题分析】利用指数的运算法则求解即可.【题目详解】原式.故答案为:.【题目点拨】本题主要考查了指数的运算法则.属于容易题.13、2【解题分析】,所以点睛:本题考查函数对称性的应用.由题目问题可以猜想为定值,所以只需代入计算,得.函数对称性的问题要大胆猜想,小心求证14、【解题分析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【题目详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:15、24:25【解题分析】设三角形三边的边长分别为,分别求出阴影部分面积和大正方形面积即可求解.【题目详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中,设三角形三边的边长分别为,则大正方形的边长为5,所以大正方形的面积,如图,将延长到,则,所以,又到的距离即为到的距离,所以三角形的面积等于三角形的面积,即,所以“赵爽弦图”外面(图中阴影部分)的面积,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为.故答案为:24:25.16、【解题分析】由正弦定理、余弦定理得答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析;(3).【解题分析】(1)连接交于点,连接,利用中位线定理得出∥,故平面;(2)由⊥底面,得,结合得平面,于是,结合得平面,故而,结合,即可得出平面;;(3)依题意,可得试题解析:(1)连接交于点,连接∵底面是正方形,∴点是的中点又为的中点,∴∥又平面,平面,∴∥平面.(2)∵⊥底面,平面,∴∵底面是正方形,∴.又,平面,平面,∴平面.又平面,∴∵,是的中点,∴.又平面,平面,,∴平面.而平面∴.又,且,又平面,平面,∴平面.(Ⅲ)∵是的中点,.【题目点拨】本题考查了线面平行的判定,线面垂直的判定与性质,棱锥的体积计算.正确运用定理是证明的关键.18、(1),增区间是(2)周期为,最大值为.【解题分析】(1)由图象平移写出的解析式,根据余弦函数的性质直接确定单调增区间.(2)应用二倍角正弦公式可得,结合正弦型函数的性质求周期和最大值.【小问1详解】由题设,,而在上递减,上递增,所以的单调增区间是.【小问2详解】由(1)有,所以,最小正周期为,最大值为,此时.综上,周期为,最大值为.19、(1);【解题分析】解出二次不等式以及分式不等式得到集合和,根据并集的定义求并集;由集合是集合的子集,可得,根据包含关系列出不等式,求出的取值范围.【题目详解】集合,由,则,解得,即,,则,则,即,可得,解得,故m的取值范围是【题目点拨】本题考查集合的交并运算,以及由集合的包含关系求参数问题,属于基础题.在解有关集合的题的过程中,要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.20、(1);(2).【解题分析】(1)根据的解集为,可得1,2即为方程的两根,根据韦达定理,可得b,c的表达式,根据有两个相等的实数根.可得该方程,即可求得a的值,即可得答案;(2)由题意得使成立,则只需,利用基本不等式,即可求得答案.【题目详解】(1)因为的解集为,所以1,2即为方程的两根,由韦达定理得,且,解得,,又方程有两个相等实数根,所以,即,,解得,所以,所以;(2)由(1)可得,,所以,则,,又,当且仅当,即x=2时等号成立,所以,使成立,等价为成立,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江西外语外贸职业学院高职单招职业适应性测试模拟试题带答案解析
- 2026年梧州职业学院高职单招职业适应性考试模拟试题带答案解析
- 2026年平凉职业技术学院高职单招职业适应性考试备考试题带答案解析
- 2026年钟山职业技术学院单招职业技能考试备考试题带答案解析
- 2026年厦门兴才职业技术学院单招职业技能笔试备考试题带答案解析
- 2026年重庆电力高等专科学校单招职业技能笔试备考题库带答案解析
- 2026年山西管理职业学院高职单招职业适应性考试备考试题带答案解析
- 2025年反假货币业务及制度考试题库(含答案)
- 未来五年鹰嘴豆企业数字化转型与智慧升级战略分析研究报告
- 未来五年新形势下医药制造行业顺势崛起战略制定与实施分析研究报告
- 2025年农业投资入股协议(生态)
- 2025贵州铜仁市“千名英才·智汇铜仁”本地引才413人备考考试题库及答案解析
- 2025版 全套200MW800MWh独立储能项目EPC工程概算表
- 2026年班组建设年度工作计划
- 船舶协议装运合同
- 新年活动策划团建方案(3篇)
- 漫画委托创作协议书
- 人教版(PEP)四年级上学期英语期末卷(含答案)
- 员工代收工资协议书
- 协会捐赠协议书范本
- 人员转签实施方案
评论
0/150
提交评论