版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福清市福清华侨中学2024届高一上数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,若,则的取值范围为A. B.C. D.2.如图,四面体ABCD中,CD=4,AB=2,F分别是AC,BD的中点,若EF⊥AB,则EF与CD所成的角的大小是()A.30° B.45°C.60° D.90°3.若,,则等于()A. B.C. D.4.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.5.若幂函数的图象过点,则的值为()A.2 B.C. D.46.已知某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=310Q2+3000.设该产品年产量为Q时的平均成本为fA.30 B.60C.900 D.1807.如图,在菱形ABCD中,下列式子成立的是A. B.C. D.8.已知是定义在上的奇函数,且在上单调递增,若,则的解集为()A. B.C. D.9.已知函数则函数的零点个数为.A. B.C. D.10.在,,中,最大的数为()A.a B.bC.c D.d二、填空题:本大题共6小题,每小题5分,共30分。11.将函数图象上的所有点向右平行移动个单位长度,则所得图象的函数解析式为___________.12.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______13.的值为______.14.若,则的最小值为__________.15.求值:__________.16.函数的反函数为___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设分别是的边上的点,且,,,若记试用表示.18.某校对100名高一学生的某次数学测试成绩进行统计,分成五组,得到如图所示频率分布直方图.(1)求图中a值;(2)估计该校高一学生这次数学成绩的众数和平均数;(3)估计该校高一学生这次数学成绩的75%分位数.19.已知函数(1)求函数的最小正周期和单调递增区间;(2)若在区间上存在唯一的最小值为-2,求实数m的取值范围20.已知函数的图象在轴右侧的第一个最高点和第一个最低点的坐标分别为和.(1)求函数的解析式;(2)求的值21.已知函数fx=2sin(1)求fx(2)若fx在区间-π6
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据对数函数的性质单调递增,,列出不等式,解出即可.【题目详解】∵函数在定义域内单调递增,,∴不等式等价于,解得,故选A.【题目点拨】本题主要考查了对数不等式的解法,在解题过程中要始终注意函数的定义域,也是易错点,属于中档题.2、A【解题分析】取BC的中点G,连结FG,EG.先证明出(或其补角)即为EF与CD所成的角.在直角三角形△EFG中,利用正弦的定义即可求出的大小.【题目详解】取BC的中点G,连结FG,EG.由三角形中位线定理可得:AB∥EG,CD∥FG.所以(或其补角)即为EF与CD所成的角.因为EF⊥AB,则EF⊥EG.因为CD=4,AB=2,所以EG=1,FG=2,则△EFG是一个斜边FG=2,一条直角边EG=1的直角三角形,所以,因为为锐角,所以,即EF与CD所成的角为30°.故选:A3、D【解题分析】根据三角函数的诱导公式即可化简求值.【题目详解】∵,,,,,.故选:D.4、A【解题分析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【题目详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.5、C【解题分析】设,利用的图象过点,求出的解析式,将代入即可求解.【题目详解】设,因为的图象过点,所以,解得:,所以,所以,故选:C.6、B【解题分析】利用基本不等式进行最值进行解题.【题目详解】解:∵某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=∴f(Q)=当且仅当3Q10=3000Q∴fQ的最小值是60故选:B7、D【解题分析】解:利用菱形的性质可知,第一问中方向不同,错误;选项B中显然不共线,因此错误.,因此C不对;只有D正确8、D【解题分析】由可得,由单调性即可判定在和上的符号,再由奇偶性判定在和上的符号,即可求解.【题目详解】∵即,∵在上单调递增,∴当时,,此时,当时,,此时,又∵是定义在上的奇函数,∴在上单调递增,且,当时,,此时,当时,,此时,综上可知,的解集为,故选:D【题目点拨】本题考查了函数的奇偶性和单调性的交汇,求得函数在各个区间上的符号是关键,考查了推理能力,属于中档题.9、B【解题分析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【题目详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【题目点拨】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题10、B【解题分析】逐一判断各数的范围,即找到最大的数.【题目详解】因为,所以;;;.故最大.故选:B.【题目点拨】本题考查了根据实数范围比较实数大小,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题意利用函数的图象变换规律,即可得到结果【题目详解】将函数的图象向右平移个单位,所得图象对应的函数解析式,即.故答案为:.12、【解题分析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为13、11【解题分析】进行对数和分数指数幂的运算即可【题目详解】原式故答案为:1114、【解题分析】整理代数式满足运用基本不等式结构后,用基本不等式求最小值.【题目详解】∵∴当且仅当,时,取最小值.故答案为:【题目点拨】用基本不等式求最值要注意“一正、二定、三相等”,若不能取等,则要改变求最值的方法.15、【解题分析】利用诱导公式一化简,再求特殊角正弦值即可.【题目详解】.故答案为:.16、【解题分析】先求出函数的值域有,再得出,从而求得反函数.【题目详解】由,可得由,则,所以故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、;;.【解题分析】根据平面向量的线性运算,即可容易求得结果.【题目详解】由题意可得,,,,,,所以.【题目点拨】本题考查利用基向量表示平面向量,涉及平面向量的线性运算,属基础题.18、(1)(2)众数为,平均数为(3)【解题分析】(1)由频率分布直方图的性质,列出方程,即可求解;可得,(2)根据频率分布直方图的中众数的概念和平均数的计算公式,即可求解;(3)因为50到80的频率和为0.65,50到90的频率和为0.9,结合百分数的计算方法,即可求解.【小问1详解】解:由频率分布直方图的性质,可得,解得.【小问2详解】解:根据频率分布直方图的中众数的概念,可得众数为,平均数为.【小问3详解】解:因为50到80的频率和为0.65,50到90的频率和为0.9,所以75%分位数为.19、(1),(2)【解题分析】(1)用诱导公式将函数化为,然后可解;(2)根据m介于第一个最小值点和第二个最小值点之间可解.【小问1详解】所以的最小正周期,由,解得,所以的单调递增区间为.【小问2详解】令,得因为在区间上存在唯一的最小值为-2,所以,,即所以实数m的取值范围是.20、(1);(2).【解题分析】(1)由已知得和,利用即可求出函数的解析式;(2)由已知得的值,代入,即可得的值试题解析:(1)解:由题意可得,1分,3分∴4分由得,5分∴.6分(2)解:∵点是函数在轴右侧的第一个最高点,∴.7分∴.8分∴9分10分11分12分考点:1、三角函数的图象与性质;2、两角和的正弦公式21、(1)π;单调递减区间是π3+kπ,5π【解题分析】(1)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果(2)由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗健康管理与互联网+
- 课件的水印底片
- 医学检验质量控制与提升
- 课件的收获感想
- 肿瘤免疫治疗的突破与发展
- 医学影像学在精神科疾病中的应用
- 2026年智能车载视频播放系统项目评估报告
- 养老院老人保健知识普及制度
- 医疗信息化建设中的挑战
- 查询安全培训情况昆山课件
- 钣喷质检员考试题及答案
- 学生安全教育家长会课件
- 2026年云南省高二物理学业水平合格考试卷试题(含答案详解)
- 完整版污水处理池施工组织设计方案
- 2025版数据安全风险评估报告(模板)
- 国开11073+《法律文书》期末复习资料
- 钢结构工程监理合同
- 企业ERP系统维护操作手册
- 眼耳鼻喉科2019年院感工作计划
- 大型钢铁企业关键备件联储联备供应链战略共享探讨
- 国企正式工合同范本
评论
0/150
提交评论