2024届福建省南平市邵武市第四中学高一上数学期末考试模拟试题含解析_第1页
2024届福建省南平市邵武市第四中学高一上数学期末考试模拟试题含解析_第2页
2024届福建省南平市邵武市第四中学高一上数学期末考试模拟试题含解析_第3页
2024届福建省南平市邵武市第四中学高一上数学期末考试模拟试题含解析_第4页
2024届福建省南平市邵武市第四中学高一上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省南平市邵武市第四中学高一上数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,且,对任意的实数,函数不可能A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数2.已知函数,则满足的x的取值范围是()A. B.C. D.3.某流行病调查中心的疾控人员针对该地区某类只在人与人之间相互传染的疾病,通过现场调查与传染源传播途径有关的蛛丝马迹,根据传播链及相关数据,建立了与传染源相关确诊病例人数与传染源感染后至隔离前时长t(单位:天)的模型:.已知甲传染源感染后至隔离前时长为5天,与之相关确诊病例人数为8;乙传染源感染后至隔离前时长为8天,与之相关确诊病例人数为20.若某传染源感染后至隔离前时长为两周,则与之相关确诊病例人数约为()A.44 B.48C.80 D.1254.已知,则等于()A.1 B.2C.3 D.65.下列命题中正确的是()A. B.C. D.6.设函数的定义域,函数的定义域为,则=A. B.C. D.7.已知,则下列结论正确的是()A. B.C. D.8.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.9.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.6410.已知实数,满足,,则的最大值为()A. B.1C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则___________.(用含a的代数式表示)12.已知,写出一个满足条件的的值:______13.设定义在区间上的函数与的图象交于点,过点作轴的垂线,垂足为,直线与函数的图象交于点,则线段的长为__________14.一个底面积为1的正四棱柱的八个顶点都在同一球面上,若这个正四棱柱的高为,则该球的表面积为__________15.已知直线经过点,且与直线平行,则直线的方程为__________16.对于定义在区间上的两个函数和,如果对任意的,均有不等式成立,则称函数与在上是“友好”的,否则称为“不友好”的(1)若,,则与在区间上是否“友好”;(2)现在有两个函数与,给定区间①若与在区间上都有意义,求的取值范围;②讨论函数与与在区间上是否“友好”三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围18.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.19.已知直线:与圆:交于,两点.(1)求的取值范围;(2)若,求.20.已知函数(1)若函数,且为偶函数,求实数的值;(2)若,,且的值域为,求的取值范围21.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】,当时,,为偶函数当时,,为奇函数当且时,既不奇函数又不是偶函数故选2、D【解题分析】通过解不等式来求得的取值范围.【题目详解】依题意,即:或,即:或,解得或.所以的取值范围是.故选:D3、D【解题分析】根据求得,由此求得的值.【题目详解】依题意得,,,所以.故若某传染源感染后至隔离前时长为两周,则相关确诊病例人数约为125.故选:D4、A【解题分析】利用对数和指数互化,可得,,再利用即可求解.【题目详解】由得:,,所以,故选:A5、A【解题分析】利用平面向量的加法、加法法则可判断ABD选项的正误,利用平面向量数量积可判断C选项的正误.【题目详解】对于A选项,,A选项正确;对于B选项,,B选项错误;对于C选项,,C选项错误;对于D选项,,D选项错误.故选:A.6、B【解题分析】由题意知,,所以,故选B.点睛:集合是高考中必考知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错7、B【解题分析】先求出,再对四个选项一一验证即可.【题目详解】因为,又,解得:.故A错误;对于B:,故B正确;对于C:,故C错误;对于D:,故D错误.故选:B8、B【解题分析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【题目详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.9、B【解题分析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【题目详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.10、C【解题分析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值进行求解【题目详解】由,得,令,则,因为,所以,即,所以的最大值为,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用换底公式化简,根据对数的运算法则求解即可【题目详解】因为,所以故答案为:.12、(答案不唯一)【解题分析】利用,可得,,计算即可得出结果.【题目详解】因为,所以,则,或,故答案为:(答案不唯一)13、【解题分析】不妨设坐标为则的长为与的图象交于点,即解得则线段的长为点睛:本题主要考查的知识点是三角函数的图象及三角函数公式的应用.突出考查了数形结合的思想,同时也考查了考生的运算能力,本题的关键是解出是这三点的横坐标,而就是线段的长14、【解题分析】底面为正方形,对角线长为.故圆半径为,故球的表面积为.【题目点拨】本题主要考查几何体的外接球问题.解决与几何体外接球有关的数学问题时,主要是要找到球心所在的位置,并计算出球的半径.寻找球心的一般方法是先找到一个面的外心,如本题中底面正方形的中心,球心就在这个外心的正上方,根据图形的对称性,易得球心就在正四棱柱中间的位置.15、【解题分析】设与直线平行的直线,将点代入得.即所求方程为16、(1)是;(2)①;②见解析【解题分析】(1)按照定义,只需判断在区间上是否恒成立;(2)①由题意解不等式组即可;②假设存在实数,使得与与在区间上是“友好”的,即,即,只需求出函数在区间上的最值,解不等式组即可.【题目详解】(1)由已知,,因为时,,所以恒成立,故与在区间上是“友好”的.(2)①与在区间上都有意义,则必须满足,解得,又且,所以的取值范围为.②假设存在实数,使得与与在区间上是“友好”的,则,即,因为,则,,所以在的右侧,又复合函数的单调性可得在区间上为减函数,从而,,所以,解得,所以当时,与与在区间上是“友好”的;当时,与与在区间上是“不友好”的.【题目点拨】本题考查函数的新定义问题,主要涉及到不等式恒成立的问题,考查学生转化与化归的思想、数学运算求解能力,是一道有一定难度的题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析.(2)[2-,1)∪(1,2+]【解题分析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范围为[2-,1)∪(1,2+]点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.18、(1).(2)(2,+∞).【解题分析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【题目详解】(1)由题可知且,所以.所以的定义域为.(2)由题易知其定义域上单调递增.所以在上的最大值为,对任意的恒成立等价于恒成立.由题得.令,则恒成立.当时,,不满足题意.当时,,解得,因为,所以舍去.当时,对称轴为,当,即时,,所以;当,即时,,无解,舍去;当,即时,,所以,舍去.综上所述,实数a的取值范围为(2,+∞).【题目点拨】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用19、(1)(2)或.【解题分析】(1)将圆的一般方程化为标准方程,根据两个交点,结合圆心到直线的距离即可求得的取值范围.(2)根据垂径定理及,结合点到直线距离公式,即可得关于的方程,解方程即可求得的值.【题目详解】(1)由已知可得圆的标准方程为,圆心,半径,则到的距离,解得,即的取值范围为.(2)因为,解得所以由圆心到直线距离公式可得.解得或.【题目点拨】本题考查了直线与圆的位置关系判断,直线与圆相交时的弦长关系及垂径定理应用,属于基础题.20、(1)(2)【解题分析】(1)由题意得解析式,根据偶函数的定义,代入求解,即可得答案.(2)当时,可得解析式,根据值域为R,分别求和两种情况,结合一次、二次函数的性质,即可得答案.【小问1详解】由题可知∵是偶函数,∴,∴,即,,∴对一切恒成立,∴,即【小问2详解】当时,,当时,,其值域为,满足题意;当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论