版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省定远县三中高一数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在下列命题中,不是公理的是A.平行于同一条直线的两条直线互相平行B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内C.空间中,如果两个角的两边分别对应平行,那么这两角相等或互补D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线2.若命题:,则命题的否定为()A. B.C. D.3.若函数(,且)在上的最大值为4,且函数在上是减函数,则实数的取值范围为()A. B.C. D.4.一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是()A.回归直线一定经过样本点中心B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位C.年龄为10时,求得身高是,所以这名孩子的身高一定是D.身高与年龄成正相关关系5.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b6.设集合则().A. B.C. D.7.已知点P(3,4)在角的终边上,则的值为()A B.C. D.8.已知函数,,的零点分别,,,则,,的大小关系为()A. B.C. D.9.设命题p:,命题q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.将一个直角三角形绕其一直角边所在直线旋转一周,所得的几何体为()A.一个圆台 B.两个圆锥C.一个圆柱 D.一个圆锥二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则____________.12.已知函数,的值域为,则实数的取值范围为__________.13.已知函数,则满足的实数的取值范围是__14.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.15.若点在过两点的直线上,则实数的值是________.16.函数fx=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数.(1)求的对称轴;(2)若,求的值及的最值.18.已知集合,.(1)若,求实数的值;(2)若,求实数的取值范围.19.某工厂利用辐射对食品进行灭菌消毒,先准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系式为p=k4x+5(0≤x≤15),若距离为10km时,测算宿舍建造费用为20万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需10万元,铺设路面每千米成本为4万元.设(1)求fx(2)宿舍应建在离工厂多远处,可使总费用最小,并求fx20.如图,在中,已知为线段上的一点,.(1)若,求的值;(2)若,,,且与的夹角为时,求的值21.已知,,且.(1)求实数a的值;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】A,B,D分别为公理4,公理1,公理2,C为角平行性质,选C2、D【解题分析】根据存在量词的否定是全称量词可得结果.【题目详解】根据存在量词的否定是全称量词可得命题的否定为.故选:D3、A【解题分析】由函数(,且)在上的最大值为4,分情况讨论得到,从而可得函数单调递增,而在上是减函数,所以可得,由此可求得的取值范围【题目详解】当时,函数单调递增,据此可知:,满足题意;当时,函数单调递减,据此可知:,不合题意;故,函数单调递增,若函数在上是减函数,则,据此可得故选:A【题目点拨】此题考查对数函数的性质,考查指数函数的性质,考查分类讨论思想,属于基础题.4、C【解题分析】利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D;【题目详解】对于A,线性回归方程一定过样本中心点,故A正确;对于B,由于斜率是估计值,可知B正确;对于C,当时,求得身高是是估计值,故C错误;对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确;故选:C【题目点拨】本题考查了线性回归方程的特征,需掌握这些特征,属于基础题.5、A【解题分析】直接判断范围,比较大小即可.【题目详解】,,,故a>b>c.故选:A.6、D【解题分析】利用求集合交集的方法求解.【题目详解】因为所以.故选:D.【题目点拨】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.7、D【解题分析】利用三角函数的定义即可求出答案.【题目详解】因为点P(3,4)在角的终边上,所以,,故选:D【题目点拨】本题考查了三角函数的定义,三角函数诱导公式,属于基础题.8、A【解题分析】判断出三个函数的单调性,可求出,,并判断,进而可得到答案【题目详解】因为在上递增,当时,,所以;因为在上递增,当时,恒成立,故的零点小于0,即;因为在上递增,当时,,故,故.故选:A.9、B【解题分析】先解不等式,然后根据充分条件和必要条件的定义判断【题目详解】由,得,所以命题p:,由,得,所以命题q:,因为当时,不一定成立,当时,一定成立,所以p是q成立的必要不充分条件,故选:B10、D【解题分析】依题意可知,这是一个圆锥.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】依据分段函数定义去求的值即可.【题目详解】由,可得,则由,可得故答案为:12、##【解题分析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【题目详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:13、【解题分析】分别对,分别大于1,等于1,小于1的讨论,即可.【题目详解】对,分别大于1,等于1,小于1讨论,当,解得当,不存在,当时,,解得,故x的范围为【题目点拨】本道题考查了分段函数问题,分类讨论,即可,难度中等14、9【解题分析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.15、【解题分析】先由直线过两点,求出直线方程,再利用点在直线上,求出的值.【题目详解】由直线过两点,得,则直线方程为:,得,即,又点在直线上,得,得.故答案为:【题目点拨】本题考查了已知两点求直线的方程,直线方程的应用,属于容易题.16、0【解题分析】先令t=cosx,则t∈-1,1,再将问题转化为关于【题目详解】解:令t=cosx,则则f(t)=t则函数f(t)在-1,1上为减函数,则f(t)即函数y=cos2x-2故答案为:0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)的值是,最小值是,无最大值【解题分析】(1)根据二次函数的对称轴公式,即可得到结果;(2)由,可求出的值,再根据二次函数的开口和对称轴,即可求出最值.【小问1详解】解:因为二次函数,所以对称轴【小问2详解】解:因为,所以.所以.所以.因为,所以开口向上,又对称轴为,所以最小值为,无最大值.18、(1)(2)或【解题分析】(1)求出集合,再根据列方程求解即可;(2)根据分,讨论求解.【小问1详解】由已知得,解得;【小问2详解】当时,,得当时,或,解得或,综合得或.19、(1)fx=9004x+5【解题分析】(1)根据距离为10km时,测算宿舍建造费用为20万元,可求k的值,由此,可得f(x)的表达式;(2)fx【题目详解】解:(1)由题意可知,距离为10km时,测算宿舍建造费用为20万元,则20=k4×10+5,解得k(2)因为fx=9004x+5答:宿舍应建在离工厂254km处,可使总费用最小,f【题目点拨】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方20、(1);(2).【解题分析】(1)根据平面向量基本定理可得,整理可得结果;(2)根据平面向量基本定理可求得,,根据数量积的运算法则代入模长和夹角,整理可求得结果.【题目详解】(1)由得:,(2)由得:又,,且与的夹角为则【题目点拨】本题考查平面向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急腹症患者快速评估与处理流程
- Unit 4 Growing up单元话题书面表达练习(解析版)-2025-2026学年九年级英语上册(牛津译林版)
- 基础护理操作流程与规范
- 精神病症状学护理:评估方法与护理流程优化
- 重庆外国语学校2025-2026学年高一化学第一学期期中学业质量监测试题含解析
- 文海-黄冈八模2025年高一物理第一学期期末复习检测试题含解析
- 山东省临沂市莒南县第三中学2025年物理高二上期末考试模拟试题含解析
- 四川轻化工大学《水声通信原理》2024-2025学年第一学期期末试卷
- 切恩-斯托克斯呼吸的护理
- 冠心病重症监护患者的疼痛管理策略
- 2022年12月上海交响乐团公开招聘4人上岸冲刺题3套【600题带答案含详解】
- IPD开发流程与传统开发流程的差别
- 影视制片管理汇总课件
- 安全教育主题班会-住校生的安全常识课件
- 严重精神障碍患者管理工作计划
- 细胞免疫荧光技术课件
- (完整版)耳鼻喉临床技术操作规范
- 【学考】高中物理会考(学业水平考试)公式及知识点总结
- GB∕T 25279-2022 中空纤维帘式膜组件
- 胃早癌的简述课件
- 主体结构分部工程验收汇报
评论
0/150
提交评论