




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省醴陵二中、醴陵四中2024届高一上数学期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,若,,,则()A. B.C. D.2.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.3.设,,则a,b,c的大小关系是()A. B.C. D.4.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定5.已知函数,则是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数6.直线的倾斜角是A. B.C. D.7.“x=1”是“x2-4x+3=0”的A.充分不必要条件B必要不充分条件C.充要条件D.既不充分也不必要条件8.计算(16A.-1 B.1C.-3 D.39.已知是方程的两根,且,则的值为A. B.C.或 D.10.已知函数,若在上单调递增,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的两个零点分别为,则___________.12.已知直线平行,则实数的值为____________13.两条直线与互相垂直,则______14.幂函数的图像经过点,则_______15.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.16.幂函数的图像经过点,则的值为____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的圆心在直线上,且经过圆与圆的交点.(1)求圆的方程;(2)求圆的圆心到公共弦所在直线的距离.18.已知函数(1)当时,求的取值范围;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数m的取值范围19.设是常数,函数.(1)用定义证明函数是增函数;(2)试确定的值,使是奇函数;(3)当是奇函数时,求的值域.20.在等腰梯形中,已知,,,,动点和分别在线段和上(含端点),且,且(、为常数),设,.(Ⅰ)试用、表示和;(Ⅱ)若,求的最小值.21.已知函数(1)求证:在上是单调递增函数;(2)若在上的值域是,求a的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】首先判断,和的大小关系,然后根据函数的单调性,判断的大小关系.【题目详解】,,,,,,是上的减函数,.故选:A.2、B【解题分析】求圆心角的弧度数,再由弧长公式求弧长.【题目详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.3、C【解题分析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【题目详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.4、D【解题分析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【题目详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D5、B【解题分析】先求得,再根据余弦函数的周期性、奇偶性,判断各个选项是否正确,从而得出结论【题目详解】∵,∴=,∵,且T=,∴是最小正周期为偶函数,故选B.【题目点拨】本题主要考查诱导公式,余弦函数的奇偶性、周期性,属于基础题6、B【解题分析】,斜率为,故倾斜角为.7、A【解题分析】将代入可判断充分性,求解方程可判断必要性,即可得到结果.【题目详解】将代入中可得,即“”是“”的充分条件;由可得,即或,所以“”不是“”的必要条件,故选:A.【题目点拨】本题考查充分条件和必要条件的判定,属于基础题.8、B【解题分析】原式=故选B9、A【解题分析】∵是方程的两根,∴,∴又,∴,∵,∴又,∴,∴.选A点睛:解决三角恒等变换中给值求角问题的注意点解决“给值求角”问题时,解题的关键也是变角,即把所求角用含已知角的式子表示,然后求出适合的一个三角函数值.再根据所给的条件确定所求角的范围,最后结合该范围求得角,有时为了解题需要压缩角的取值范围10、C【解题分析】利用分段函数的单调性列出不等式组,可得实数的取值范围【题目详解】在上单调递增,则解得故选:C【题目点拨】本题考查函数单调性的应用,考查分段函数,端点值的取舍是本题的易错二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】依题意方程有两个不相等实数根、,利用韦达定理计算可得;【题目详解】解:依题意令,即,所以方程有两个不相等实数根、,所以,,所以;故答案为:12、【解题分析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出【题目详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=x+,y=+,∵两条直线平行,∴,≠,解得m=﹣7综上可得:m=﹣7故答案为﹣7【题目点拨】本题考查了分类讨论、两条直线平行的充要条件,属于基础题13、【解题分析】先分别求出两条直线的斜率,再利用两条直线垂直的充要条件是斜率乘积等于,即可求出结果【题目详解】直线的斜率,直线的斜率,且两直线与互相垂直,,,解得,故答案为【题目点拨】本题主要考查两直线垂直的充要条件,属于基础题.在两条直线的斜率都存在的条件下,两条直线垂直的充要条件是斜率乘积等于14、【解题分析】本题首先可以根据函数是幂函数设函数解析式为,然后带入点即可求出的值,最后得出结果。【题目详解】因为函数是幂函数,所以可设幂函数,带入点可得,解得,故幂函数,即,答案为。【题目点拨】本题考查函数解析式的求法,考查对幂函数的性质的理解,可设幂函数解析式为,考查计算能力,是简单题。15、【解题分析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【题目详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【题目点拨】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题16、2【解题分析】因为幂函数,因此可知f()=2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)求出的坐标,然后求出的中垂线方程,然后求出圆心和半径即可;(2)两圆相减可得方程,然后利用点到直线的距离公式求出答案即可.【题目详解】(1)设圆与圆交点为,由方程组,得或不妨令,,因此的中垂线方程为,由,得,所求圆的圆心,,所以圆的方程为,即(2)圆与圆的方程相减得公共弦方程,由圆的圆心,半径,且圆心到公共弦:的距离18、(1)(2)【解题分析】(1)首先利用三角恒等变换公式化简函数解析式,再根据的取值范围,求出的取值范围,最后根据正弦函数的性质计算可得;(2)依题意可得,再由(1)及正弦函数的性质计算可得;【小问1详解】解:因为即∵,∴,∴,∴,故的取值范围为【小问2详解】解:∵,∴由(1)知,∵有两个不同的实数根,因为在上单调递增,在上单调递减,且当时,由正弦函数图象可知,解得,故实数的取值范围是19、(1)详见解析(2)【解题分析】(1)证明函数单调性可根据函数单调性定义取值,作差变形,定号从而写结论(2)因为函数是奇函数所以(3)由.故,∴试题解析:(1)设,则.∵函数是增函数,又,∴,而,,∴式.∴,即是上的增函数.(2)∵对恒成立,∴.(3)当时,.∴,∴,继续解得,∴,因此,函数的值域是.点睛:本题考差了函数单调性,奇偶性概念及其判断、证明,函数的值域求法,对于定义来证明单调性要注意做差后的式子的化简.20、(Ⅰ),;(Ⅱ).【解题分析】(Ⅰ)过点作,交于点,证明出,从而得出,然后利用向量加法的三角形法则可将和用、表示;(Ⅱ)计算出、和的值,由得出,且有,然后利用向量数量积的运算律将表示为以为自变量的二次函数,利用二次函数的基本性质可求出的最小值.【题目详解】(Ⅰ)如下图所示,过点作,交于点,由于为等腰梯形,则,且,,即,又,所以,四边形为平行四边形,则,所以,为等边三角形,且,,,,;(Ⅱ),,,由题意可知,,由得出,所以,,,令,则函数在区间上单调递减,所以,,因此,的最小值为.【题目点拨】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业礼仪培训体系构建与实战应用
- 纺织品的智能库存管理考核试卷
- Photoshop CC 2019中文版标准教程(第8版)课件 第5章 绘制或修饰图像
- 纤维素纤维在造纸工业的替代策略考核试卷
- 电气设备在风力发电机组控制系统中的应用考核试卷
- 糕点行业电子商务运营与网络营销考核试卷
- 【部编版】四年级语文下册口语交际《朋友相处的秘诀》精美课件
- 海洋工程装备海洋矿产资源开发考核试卷
- 模具制造中的物联网与大数据分析考核试卷
- 践行游戏精神 优化课程实施
- GB 7718-2025食品安全国家标准预包装食品标签通则
- 2025年高考历史总复习世界近代史专题复习提纲
- 2025-2030中国蜂蜜行业营销渠道与多元化经营效益预测研究报告
- 内蒙古汇能集团笔试题库
- 产后保健知识课件
- 氧化反应工艺安全操作规程
- 子宫肌瘤病例讨论
- 门窗安装施工方案07785
- 2025年应急管理普法知识竞赛题(附答案)
- 土壤氡检测方案
- 氧化镓雪崩光电探测器的研究进展
评论
0/150
提交评论