




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省湖州、衢州、丽水三地市高一上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则a,b,c大小关系为()A. B.C. D.2.函数,的最小正周期是()A. B.C. D.3.设且则()A. B.C. D.4.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数5.若均大于零,且,则的最小值为()A. B.C. D.6.已知是定义域为的单调函数,且对任意实数,都有,则的值为()A.0 B.C. D.17.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定8.命题:,,则该命题的否定为()A., B.,C., D.,9.已知全集,集合,集合,则为A. B.C. D.10.直线的倾斜角是()A.30° B.60°C.120° D.150°二、填空题:本大题共6小题,每小题5分,共30分。11.函数单调递增区间为_____________12.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____13.若函数在区间[2,3]上的最大值比最小值大,则__________.14.方程的解在内,则的取值范围是___________.15.已知与是两个不共线的向量,且向量(+λ)与(-3)共线,则λ的值为_____.16.函数是偶函数,且它的值域为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象的一部分如图所示:(1)求函数的解析式;(2)求函数图象的对称轴方程及对称中心18.已知函数的图象时两条相邻对称轴之间的距离为,将的图象向右平移个单位后,所得函数的图象关于y轴对称.(1)求函数的解析式;(2)若,求值.19.已知函数为上奇函数(1)求实数的值;(2)若不等式对任意恒成立,求实数的最小值20.已知函数(其中,)的图象与轴的任意两个相邻交点间的距离为,且直线是函数图象的一条对称轴.(1)求的值;(2)求的单调递减区间;(3)若,求的值域.21.如图,已知四棱柱的底面是菱形,侧棱底面,是的中点,,.(1)证明:平面;(2)求直线与平面所成的角的正弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】利用对数函数的单调性证明即得解.【题目详解】解:,,所以故选:B2、C【解题分析】利用正弦型函数周期公式直接计算作答.【题目详解】函数的最小正周期.故选:C3、C【解题分析】试题分析:由已知得,,去分母得,,所以,又因为,,所以,即,选考点:同角间的三角函数关系,两角和与差的正弦公式4、B【解题分析】根据特称量词命题的否定是全称量词命题即可求解【题目详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B5、D【解题分析】由题可得,利用基本不等式可求得.【题目详解】均大于零,且,,当且仅当,即时等号成立,故的最小值为.故选:D.【题目点拨】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6、B【解题分析】令,可以求得,即可求出解析式,进而求出函数值.【题目详解】根据题意,令,为常数,可得,且,所以时有,将代入,等式成立,所以是的一个解,因为随的增大而增大,所以可以判断为增函数,所以可知函数有唯一解,又因为,所以,即,所以.故选:B.【题目点拨】本题主要考查函数单调性和函数的表示方法,属于中档题.7、D【解题分析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【题目详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D8、B【解题分析】根据特称命题的否定可得出结论.【题目详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【题目点拨】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.9、A【解题分析】,所以,选A.10、C【解题分析】设直线的倾斜角为,得到,即可求解,得到答案.【题目详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【题目点拨】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【题目详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:12、{﹣2,4,6}【解题分析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【题目详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【题目点拨】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.13、【解题分析】函数在上单调递增,∴解得:故答案为14、【解题分析】先令,按照单调性求出函数的值域,写出的取值范围即可.【题目详解】令,显然该函数增函数,,值域为,故.故答案为:.15、-【解题分析】由向量共线可得+λ=k((-3),计算即可.【题目详解】由向量共线可得+λ=k((-3),即+λ=k-3k,∴解得λ=-.故答案为:-16、【解题分析】展开,由是偶函数得到或,分别讨论和时的值域,确定,的值,求出结果.【题目详解】解:为偶函数,所以,即或,当时,值域不符合,所以不成立;当时,,若值域为,则,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)对称轴,;对称中心为,【解题分析】(1)根据图形的最高点最低点,得到,以及观察到一个周期的长度为8,求出,在代入点的坐标即可求出,从而得到表达式;(2)利用正弦曲线的对称轴和对称中心,将看作整体进行计算即可.【题目详解】解:(1)由题图知,,,,又图象经过点,.,,(2)令,.,图象的对称轴,令,.图象的对称中心为,18、(1)(2)【解题分析】(1)根据两条相邻对称轴之间的距离可求得函数的周期,进而求得,根据平移之后函数图象关于轴对称,可得值,从而可得函数解析式;(2)将所求角用已知角来表示即可求得结果【小问1详解】由题意可知,,即,所以,,将的图象向右平移个单位得,因为的图象关于轴对称,所以,,所以,,因为,所以,所以;【小问2详解】,所以,,,所以19、(1);(2)【解题分析】(1)由奇函数得到,再由多项式相等可得;(2)由是奇函数和已知得到,再利用是上的单调增函数得到对任意恒成立.利用参数分离得对任意恒成立,再求,上最大值可得答案【题目详解】(1)因为函数为上的奇函数,所以对任意成立,即对任意成立,所以,所以(2)由得,因为函数为上的奇函数,所以由(1)得,是上的单调增函数,故对任意恒成立所以对任意恒成立因为,令,由,得,即所以的最大值为,故,即的最小值为【题目点拨】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到,再利用参数分离后求的最大值,考查了学生分析问题、解决问题的能力.20、(1)2(2)(3)【解题分析】小问1:先求解函数周期再求得参数的值;小问2:根据对称轴求出的值,结合正弦函数单调减区间定义即可求解;小问3:因为,所以,结合正弦函数的值域即可求出结果【小问1详解】因为函数的图象与轴的任意两个相邻交点间的距离为,所以函数的周期,所以【小问2详解】因为直线是函数图象的一条对称轴,所以,.又,所以所以函数的解析式是令,解得所以函数的单调递减区间为【小问3详解】因为,所以.所以,即函数的值域为21、(1)详见解析;(2).【解题分析】(1)连接交于点,连接,,可证明四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料力学与智能材料性能控制重点基础知识点
- 材料疲劳断裂机理实验验证重点基础知识点
- 经济学理论与现实的冲突试题及答案
- 银行发生火灾的应急预案(3篇)
- 船上发生火灾应急预案(3篇)
- 火灾触电踩踏事故专项应急预案(3篇)
- 铁路超大火灾应急预案(3篇)
- 高考数学间接法探究及试题及答案
- 风险管理与企业战略目标顺应性的研究试题及答案
- 经济政策的心理学影响与效果评估试题及答案
- 中国生铁行业发展现状及市场前景分析预测报告
- 2025年中国白杨树市场现状分析及前景预测报告
- 建筑工程质量管理试题及答案
- 2025年保密教育线上培训考试试题及答案
- JJG 693-2011可燃气体检测报警器
- 中共中央办公厅、国务院办公厅关于进一步稳定和完善农村土地承包关系的通知中办发〔1997〕16号,1997年6
- 实用美学第九讲饮食美学课件
- “三合一”“多合一”场所消防安全告知书
- 学校理发店经营突发事件应急方案
- 职业卫生评价重要知识点概要
- 计算机应用基础-终结性考试试题国开要求标准
评论
0/150
提交评论